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Definitions: Complexity

> The number of words we need to
describe a situation

> Complexity is closely related to
Information content

— Need a lot of words to describe
everything in this picture

— We need to describe each item as
they are different from the others

— Descriptions are at a small scale

-

l,- LA\

gti




Definitions: Complexity — Less Complex

> Need a fewer words to describe
everything in this picture

> There is more commonality

— There are common patterns at
large scale

— Two colors
— Two teams
— Focus
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Definitions: Complexity — Simple

 Need even fewer words to describe
this picture

* I[gnore the internal details of the
person

* |gnore the organization of the snow
molecules

* Only need the mass of the skier,
the angle of the slope and the
amount of friction
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Definitions: Complexity vs. Scale

Path of
molecule -

A gas may be
pictured as a collection of widely
spaced molecules in continuous,
crl:mtic motion.
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Highly Engineered Systems — Very Complex

Time

Degradation

Shear Working

Pressure

L 4

Temperature

s 4

Visco-elastic Properties
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Statistics = Probability = Physics
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Predicting the Future
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Why Is The Past a Poor Predictor of the Future?

> There are at least two reasons why the past is a poor predictor of the future:

1. Different system states due to interactions take a long time to manifest
themselves

2. Independence of stochastic events with known probability p
a) The current event is not influenced by the past — the process has no memory
b) In reality we infer unknown p from evaluation of the past events
I.  This is an uncertain process that we will address in upcoming slides

ii.  We may succumb to faulty logic in thinking that the past events actually do give us the
probability of occurrence p
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System of Systems View

> In systems of systems there are many possible outcome states (COMPLEXITY)
>We need to enumerate all of these states

>We need to count how many times each state occurs (PROBABILITY)

> |t takes many interactions over a long timeframe to see all states

> A purely empirical approach based on reaction to what has already happened
will be blind to the majority of outcome states

> It we use a purely empirical approach we will be surprised by new lower
probability outcome states

>\We will not understand how they came to be

PHMSA RISK MODEL WORK GROUP 12 gtla




Progression of System Fault Severity Due to Sub-System
Interactions

0 sub-
system
faults

. Perfect
" Operations

>Working assumption that
more simultaneous sub-
system faults that interact

=. » Simple Fault

2" sub-

leads to greater ot =P
consequence L

Significant

»
>

> Backed up by NTSB and ‘B - ofr

other investigations of

4™ sub-

Industrial disasters SN

fault

—t. Catastrophic

Fault
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Spatio-Temporal Simulation of Interactions

COF Plot tor Five System Componants Modaled by # Logistic Distribution
30 your Expected Lifetime and Vasying Scale P s

Simulate a system with five
sub-systems

i
3
thERE!

* Each has a 30 year expected
lifetime (50% likelihood of
system anomaly)

* Each has a different rate of &
reaching 50% likelihood of |
system anomaly in 30 years

e Use logistic distributions to
model each sub-system
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Cumulative Interactions Over 30 Years

* 10,000 spatial locations
where five sub-systems
can interact

1,000 simulations of
possible combinations of
the sub-system states at
each spatial location

e 10,000,000 total S
Interactions evaluated T en

3 - Two interacting faults
4 - Three Interacting fauls

 Count the number 8 iy
occurrences of
0,1, 2,3,4 or5 faults at a

location
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One in a Million Threshold for Cumulative Interactions

e 1 system fault always exceeds 10,000,000 interactions were evaluated.

—6 Il Al The one in a million threshold is 10 parts
1x10 IIkeIIhOOd Of in 10,000,000 — the maximum z axis

occurrence bound in the current plot.

* 2 interacting faults — in year 3

3 interacting faults — in year
13

» 4 interacting faults — in year S -
19 (me

5 interacting faults — in year "
25
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Interactions in Each One Year Timeframe

> Count the number of
occurrences of
0, 1, 2 ,3,4 or 5 faults at a
location in each one year
timeframe

Interaction States:

1 - No faults

2 < One fault

3 - Two Interacting faults

4 . Three interacting faults
5 - Fouwr Inleracing 1auits

6 - Five interacting faults |
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One in a Million Threshold for Interactions in a Specific Year

10,000,000 interactions were evaluated.

e 1 System fault always The one in a million threshold is 10 parts
exceeds 1 X 107° in 10,000,000 — the maximum z axi

likelihood of occurrence bound in the current plo

* 2 interacting faults —in |
year 5

* 3 interacting faults —in
year 17

* 4 interacting faults —in o
year 23 et

* 5 interacting faults —in ] T
year 27 e (12

Miarachon Stile
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-
Interactions in Individual Years

Cumulative Interactions

Year Interactions: 0| Interactions: 1| Interactions: 2| Interactions: 3| Interactions: 4| Interactions: 5 Sum Row Distribution Year Interactions: 0| Interactions: 1| Interactions: 2| Interactions: 3| Interactions: 4| Interactions: 5 Sum Row Distribution

1 0.0884% 0.0000% 0.0000% 0.0000% 0.0000% 100% H_ 1 0.0710% 0.0000% 0.0000% 0.0000% 0.0000% 100% H_

2 0.1122% 0.0000% 0.0000% 0.0000% 0.0000% 100% H_ 2 0.1622% 0.0001% 0.0000% 0.0000% 0.0000% 100% H_

3 0.1372% 0.0001% 0.0000% 0.0000% 0.0000% 100% H_ 3 0.2712% 0.0002% 0.0000% 0.0000% 0.0000% 100% H_

4 0.1677% 0.0001% 0.0000% 0.0000% 0.0000% 100% H_ 4 0.4072% 0.0003% 0.0000% 0.0000% 0.0000% 100% H_

5 0.2091% 0.0001% 0.0000% 0.0000% 0.0000% 100% H_ 5 0.5745% 0.0006% 0.0000% 0.0000% 0.0000% 100% H_ _

5] 0.2647% 0.0002% 0.0000% 0.0000% 0.0000% 100% H_ [ 0.7900% 0.0012% 0.0000% 0.0000% 0.0000% 100% H_ _

7 0.3274% 0.0002% 0.0000% 0.0000% 0.0000% 100% H_ 7 1.0531% 0.0022% 0.0000% 0.0000% 0.0000% 100% H_ _

8 0.4088% 0.0005% 0.0000% 0.0000% 0.0000% 100% H_ _ 8 1.3738% 0.0044% 0.0000% 0.0000% 0.0000% 100% H_ _

9 0.5084% 0.0007% 0.0000% 0.0000% 0.0000% 100% H_ _ 9 1.7714% 0.0070% 0.0000% 0.0000% 0.0000% 100% H_ _

10 0.6281% 0.0008% 0.0000% 0.0000% 0.0000% 100% H_ _ 10 2.2746% 0.0122% 0.0000% 0.0000% 0.0000% 100% H_ _

11 0.7842% 0.0016% 0.0000% 0.0000% 0.0000% 100% H_ _ 11 2.8873% 0.0209% 0.0000% 0.0000% 0.0000% 100% H_ _

12 0.9833% 0.0024% 0.0000% 0.0000% 0.0000% 100% H_ _ 12 3.6538% 0.0355% 0.0001% 0.0000% 0.0000% 100% H_ _

13 1.2170% 0.0043% 0.0000% 0.0000% 0.0000% 100% H_ _ 13 4.5980% 0.0566% 0.0001% 0.0000% 0.0000% 100% H_ _

14 1.5246% 0.0073% 0.0000% 0.0000% 0.0000% 100% H_ _ 14 5.7510% 0.0886% 0.0004% 0.0000% 0.0000% 100% m__ _

15 1.9005% 0.0114% 0.0000% 0.0000% 0.0000% 100% m_ _ 15 7.1842% 0.1451% 0.0009% 0.0000% 0.0000% 100% m__ _

16 2.3771% 0.0185% 0.0000% 0.0000% 0.0000% 100% H_ _ 16 8.9159% 0.2408% 0.0018% 0.0000% 0.0000% 100% |

17 2.9655% 0.0287% 0.0001% 0.0000% 0.0000% 100% H_ _ 17 11.0462% 0.3887% 0.0041% 0.0000% 0.0000% 100% m__ _

18 3.6929% 0.0471% 0.0003% 0.0000% 0.0000% 100% H_ _ 13 13.5455% 0.6229% 0.0084% 0.0000% 0.0000% 100% m__ _

19 4.5979% 0.0745% 0.0005% 0.0000% 0.0000% 100% m__ _ 19 16.5727% 0.9941% 0.0183% 0.0000% 0.0000% 100% m__ _
20 5.7194% 0.1208% 0.0012% 0.0000% 0.0000% 100% m__ _ 20 20.1037% 1.5725% 0.0397% 0.0001% 0.0000% 100% W _ _
21 7.1021% 0.1957% 0.0021% 0.0000% 0.0000% 100% m__ _ 2 24.0689% 2.4918% 0.0872% 0.0007% 0.0000% 100% W _ _
22 B8.8082% 0.308%% 0.0043% 0.0000% 0.0000% 100% m__ _ 22 28.4699% 3.8764% 0.1909% 0.0023% 0.0000% 100% B _
23 10.8461% 0.4952% 0.0098% 0.0001% 0.0000% 100% m__ _ 23 33.0227% 5.9733% 0.4030% 0.0078% 0.0000% 100% B _ _
24 13.3694% 0.7894% 0.0211% 0.0002% 0.0000% 100% m__ _ 24 37.3374% 9.0233% 0.8544% 0.0254% 0.0000% 100% Hw__ _
25 16.4833% 1.2823% 0.0475% 0.0008% 0.0000% 100% m__ _ _ 25 44.0107% 40.8315% 13.2922% 1.7827% 0.0823% 0.0005% 100% Bl _ _
26 20.3721% 2.1082% 0.1061% 0.0026% 0.0000% 100% W _ _ _ 26 34.6258% 42.6248% 18.8931% 3.5880% 0.2643% 0.0042% 100% Bl _
27 25.3304% 3.5790% 0.2497% 0.0091% 0.0001% 100% W _ _ 27 25.0283% 41.5021% 25.5620% 7.0650% 0.8160% 0.0267% 100% mlw__
28 31.1295% 5.8958% 0.5304% 0.0225% 0.0002% 100% | 238 15.8933% 36.3955% 31.8854% 13.1573% 2.4975% 0.1661% 100% = 1 .
29 35.7709% 8.1601% 0.8448% 0.0404% 0.0009% 100% B 29 8.2257% 26.9949% 34.9249% 22.1517% 6.8731% 0.8298% 100% —mlm_
30 35.7929% 8.1784% 0.8507% 0.0393% 0.0007% 100% B 30 3.1357% 15.6546% 31.2686% 31.2221% 15.6024% 3.1165% 100% e | e

4 4 1 i i covotion IS, _d F T
Distribution B Distribution

PHMSA RISK MODEL WORK GROUP

gti




Probability Distributions:
Predicting the Next Outcome
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How to Develop Distributions for Risk Models

> We need to identify possible system states

> Each time we inspect the system it is either in a
particular state or not

> We count each outcome separately —is in state k, is not
In state k

> This is a Bernoulli process

A Bernoulli process is a finite or infinite sequence of independent random variables X;, X;, X3,

ceey

such that bp) bip) bip) bip) bip) bp) Bi6.pl
*For each i, the value of X; is either O or 1; ® + O+ O + @ + @ + @ = 0000
*For all values of i, the probability that X, = 1 is the same number p. 1 0 0 1 1 1 4

In other words, a Bernoulli process is a sequence of independent identically distributed Bernoulli

trials.

Independence of the trials implies that the process is memoryless. Given that the probability p is p if k=1,

known, past outcomes provide no information about future outcomes. (If p is unknown, (ki p) = .

however, the past informs about the future indirectly, through inferences about p.) 1-p k=0

https://en.wikipedia.org/wiki/Bernoulli process
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https://en.wikipedia.org/wiki/Statistical_independence
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Independent_identically_distributed
https://en.wikipedia.org/wiki/Bernoulli_trial
https://en.wikipedia.org/wiki/Bernoulli_process

The Past Informs About the Future Indirectly, Through
Inferences About p

> COU nting the number Of times a In Bayesian inference, the beta distribution is the conjugate prior probability

distribution for the Bernoulli, binomial, negative binomial and geometric

SyStem iS in State k gives an distributions. For example, the beta distribution can be used in Bayesian analysis
: 1 to describe initial knowledge concerning probability of success such as the
eStImate Of the prObabIIIty p Of probability that a space vehicle will successfully complete a specified mission. The
being N state k beta distribution is a suitable model for the random behavior of percentages and
proportions.
> HOW Certain are we abOUt th|S https://en.wikipedia.org/wiki/Beta distribution
Inference?
bp) bip) bip) bip) bip) bip) BiS.p)
> Bayesian Inference using the - G SR R SR SHM il i
Beta distribution quantifies the
uncertainty in our inference PE4/6=2/3. (1-p) @1/3
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https://en.wikipedia.org/wiki/Beta_distribution

Beta(4,2) and Beta(b,3)

> The Beta distribution has two
parameters:

— Beta(alpha, beta)
— Alpha — count of successes

— Beta — count of non-successes

(04 a—1
mean = — mode =
atp a+f-2
bip) bip) bip) bip) bip) bip) Bi6.p)

® + O+ O +@ + @ + 0= 0000
1 0 0 1 1 1 4

Px~4/6=2/3. (1-p)=1/3

gt

2.5

1.5

0.5

D

alpha

beta

mean

mode

LCB

ucB

0.667

0.750

0.284

0.947

0.625

0.667

0.290

0.901

Beta(5,3)




How to Develop Beta Distributions from Data

1. Start by defining our initial belief R
about the probability of success or

failure

a) Inthe absence of solid knowledge use
an ignorant prior: Beta(1,1)

b) An ignorant prior defines the state where
we have a 50% probability of success or
failure, but any proportion of success or
failure is equally likely

.......

c) In other words we do not have a clue

PHMSA RISK MODEL WORK GROUP
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Bayesian Updating for the Beta Distribution i1s Simple
and Painless

2. Setup a simple spreadsheet

Credible Bounds 95% 0.025 0.975

3. Enter an ignorant prior in the first cells
Data TRUE /

4. Use the Excel function BETA.INV(D$1,B4,C4) -
to calculate the credible bounds T M i M B

0
1

5. Calculate the mean directly from the data 2

Credible Bounds 0.95 =(1-C1)/2 =1-D1
Data Point Alpha Beta LCB Mean ucB TRUE / FALSE
0 1 1 =BETA.INV(D$1,B4,C4) =IF(G4<>CHAR(32),B4/(B4+C4),CHAR(32)) =BETA.INV(E$1,B4,C4) N/A
1 =IF(G5<>CHAR(32),B4+G5,CHAR(32)) | =IF(G5<>CHAR(32),C4+(1-G5),CHAR(32)) | =IF(G5<>CHAR(32),BETA.INV(D$1,85,C5),CHAR(32)) =IF(G5<>CHAR(32),B5/(B5+C5),CHAR(32)) =IF(G5<>CHAR(32),BETA.INV(E$1,B5,C5),CHAR(32)) | =CHAR(32)
=IF(G6<>CHAR(32),B5+G6,CHAR(32)) | =IF(G6<>CHAR(32),C5+(1-G6),CHAR(32)) | =IF(G6<>CHAR(32),BETA.INV(DS$1,B6,C6),CHAR(32)) =IF(G6<>CHAR(32),B6/(B6+C6),CHAR(32)) =IF(G6<>CHAR(32),BETA.INV(E$1,B6,C6),CHAR(32)) | =CHAR(32)

prmisa sk vobeL work crou S g



Bayesian Updating for the Beta Distribution i1s Simple

and Painless

6. Increment the Alpha column by 1 for a
Credible Bounds 95% 0.025 0.975
successful outcome
Data Point Alpha Beta LCB Mean ucB TRUE /
FALSE
/. Increment the Beta column by one for 0 ] T oo | os0 | oo | wa
1 2 1 0.158 0.667 0.987 TRUE
an unsuccessful outcome 2 2 omi | oso | osos | FaE
Credible Bounds
0.95 =(1-C1)/2 =1-D1
Data Point Alpha Beta LCB Mean ucB TRUE / FALSE
0 1 1 =BETA.INV(D$1,B4,C4) =IF(G4<>CHAR(32),B4/(B4+C4),CHAR(32)) =BETA.INV/(E$1,B4,C4) N/A
1 =IF(G5<>CHAR(32),B4+G5,CHAR(32)) =IF(G5<>CHAR(32),C4+(1-G5),CHAR(32)) =IF(G5<>CHAR(32),BETA.INV(D$1,B5,C5),CHAR(32)) =IF(G5<>CHAR(32),B5/(B5+C5),CHAR(32)) =IF(G5<>CHAR(32),BETA.INV(E$1,B5,C5),CHAR(32)) TRUE
2 =|F(G6<>CHAR(32),B5+G6,CHAR(32)) =IF(G6<>CHAR(32),C5+(1-G6),CHAR(32)) =IF(GG<>CHAR(32),BETA.INV(D$1,B6,C6),CHAR(32)) =IF(G6<>CHAR(32),B6/(B6+C6),CHAR(32)) =IF(GG<>CHAR(32),BETA.INV(E$1,BG,C6),CHAR(32)) FALSE

gti




Bayesian Updating for an inspection Process

Credible Bounds 95% 0.025 0.975 Inspection Proportion 0.333 Bayesian Updating of Inspection Data l‘lsing the Beta Distribution with lgnorant Prior
Beta(1,1)
Data Alpha Beta LCB Mean ucs TRUE/ Inspections Actual LA .
Point FALSE Probability !
0 1 1 0.025 0.500 0.975 N/A N/A 0.333 \ '
1 1 2 0.013 0.333 0.842 FALSE 0 0.333 0300 \
2 1 3 0.008 0.250 0.708 FALSE 0 0.333 ".
3 1 4 0.006 0.200 0.602 FALSE 0 0.333 )
4 2 4 0.053 0.333 0.716 TRUE 1 0.333 o8 i 8
5 3 4 0.118 0.429 0.777 TRUE 1 0.333 ' o
6 3 5 0.099 0.375 0.710 FALSE 0 0.333 \ ]
7 3 6 0.085 0.333 0.651 FALSE 0 0.333 0200 v
8 3 7 0.075 0.300 0.600 FALSE 0 0.333
9 4 7 0.122 0.364 0.652 TRUE 1 0.333 &
10 4 8 0109 | 0333 | 0.610 | FALSE 0 0.333 g 10w
11 4 9 0.099 0.308 0.572 FALSE 0 0.333 C_
12 4 10 0.091 0.286 0.538 FALSE 0 0.333 ;
13 4 11 0084 | 0267 | o508 | raLse 0 0.333 B ey
14 5 11 0.118 0.313 0.551 TRUE 1 0.333 ?
15 6 11 [ 0152 | 0353 | 0587 | TRUE 1 0.333 2 e
16 7 11 0.184 0.389 0.617 TRUE 1 0.333 _:.
17 7 12 0.173 0.368 0.590 FALSE 0 0.333
18 7 13 0.163 0.350 0.566 FALSE 0 0.333 8,300
19 7 14 0.154 0.333 0.543 FALSE 0 0.333
20 8 14 0.181 0.364 0.570 TRUE 1 0.333
21 8 15 0.172 0.348 0.549 FALSE 0 0.333 0.200
22 9 15 0.197 0.375 0.573 TRUE 1 0.333
23 9 16 0.188 0.360 0.553 FALSE 0 0.333
24 9 17 0.180 0.346 0.535 FALSE 0 0.333 0.100
25 10 17 0.202 0.370 0.557 TRUE 1 0.333
26 10 18 0.194 0.357 0.540 FALSE 0 0.333
27 10 19 0.186 0.345 0.524 FALSE 0 0.333 0.000
28 10 20 0.179 0.333 0.508 FALSE 0 0.333
29 10 21 0.173 0.323 0.494 FALSE 0 0.333 o
30 0.192 0.344 0.514 TRUE 1 0.333

PHMSA RISK MODEL WORK GROUP



Bayesian Updating for Population Sampling Using Beta Distribution. Sampling #0

§ T T T ] T I T T I
—— Pricy
Postenor 2.5% Lower Cencible Bound
—— Pesiurior 07 5% Uppar Cracdin Bound
——Actunl Proporson
45— i
ik -
iy Prior Algha = 1 Prior Bela = 1Prior Mean = 0.5 L
- -
w
E 25— 0
- <
16— =
1 |-
06— (1l
. | | | | | : | | |
0 01 02 03 04 05 08 07 08 08 L)

Proportion
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Example of Beta Distributions and Bayesian Updating
Used to Evaluate Risk Under Uncertainty

> 22 out of 365 fusions failed In
service

> Random sampling plan
developed to assess quality
of non-failed fusions

> Hypergeometric distribution
used to predict findings
based on prior data —
equivalent to an exact Fisher
test for significance

Prior Probability | Prior Probability | Prior Probability | Prior Probability Sum of Prior
.| Quantity on PDF . Prior Probability| of FindingZero | of Finding One of Finding Two | ofFinding Three o
Size Proportion |Samples . . ] . . . . . . Probabilities of
1/12/2017 of Failure Failuresin Failure in Failuresin Failuresin Detection
Sampled Saddles | Sampled Saddles | Sampled Saddles | Sampled Saddles
16 67 18.36% 5 1.41% 81.56% 17.34% 1.08% 0.02% 100%
14 26 7.12% 2 0.00% 100.00% 0.00% 0.00% 0.00% 100%
12 28 7.67% 2 37.93% 64.40% 31.33% 4.12% 0.14% 100%
10 46 12.60% 3 13.33% 33.50% 50.25% 16.26% 0.00% 100%
3 58 15.89% 4 0.00% 100.00% 0.00% 0.00% 0.00% 100%
6 140 38.36% 9 2.17% 92.96% 7.04% 0.00% 0.00% 100%
Sum 365 100.00% 25
) . ) ) ) ) Posterior Posterior )
. Field | PriorBeta | Prior Beta Prior Sampling|Sampling Posterior
. Field } o . . Beta Beta .
Size |Count| . Failure |Distribution|Distribution |Probability| Plan |PlanNon{ _ . ... .. |Probability
Failures ) ) N Distribution | Distribution )
Percent alpha beta of failure | Failures | Failures of Failure
alpha beta
16 71 1 1.41% 0.028 1.972 1.41% 5 0 5.028 1.972 71.83%
14 22 0 0.00% 1.000 1.000 50.00% 2 0 3.000 1.000 75.00%
12 29 11 37.93% 0.759 1.241 37.93% 2 0 2.759 1.241 68.97%
10 45 6 13.33% 0.267 1.733 13.33% 3 0 3.267 1.733 65.33%
8 60 0.00% 1.000 1.000 50.00% 4 0 5.000 1.000 83.33%
5] 138 3 2.17% 0.043 1.957 2.17% 9 0 9.043 1.957 82.21%
Total| 365 21 5.75% 0.115 1.885 5.75% 25 0 25.115 1.885 93.02%

PHMSA RISK MODEL WORK GROUP
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Credible Bounds for Sub-Populations and Entire

Population

> Credible bounds for each sub-
population heavily impacted by
number of samples

> All results are statistically significant
at the 0.05 level per the
hypergeometric prior probabilities

> Can combine sub-populations as the
Installations were performed by a
single contractor, using a single
process in the same time frame.

Posterior Posterior Posterior 2.5% Lower | 97.5% Upper
. Beta Beta - . .
Size C C . Probability Credible Credible
Distribution Distribution .
of Failure Bound Bound
alpha beta
16 5.028 1.972 71.83% 37.1% 95.8%
14 3.000 1.000 75.00% 30.2% 99.2%
12 2.759 1.241 68.97% 24.0% 98.0%
10 3.267 1.733 65.33% 24.7% 95.5%
8 5.000 1.000 83.33% 48.7% 99.5%
6 9.043 1.957 82.21% 56.7% 97.6%
Entire Population
(Not additive with 25.115 1.885 93.02% 81.4% 99.2%

results above)
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Incorporating Data Quality Metrics
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Simple Scoring of Data Quality Attributes

> At the March meeting of the
Risk Model Work Group we
discussed methods for
assigning data quality scores

>\We can subjectively choose a
line of demarcation for the

Weights Score :
— @12.5 Good
— < 12.5Bad

PHMSA RISK MODEL WORK GROUP

Score
Integrity
P e Authentic C liance = Transparen Reliabil
Aresiou ity | Comp parency ity
: Yes 15 15 15 15
- Partial 10 10 10 10
e Default Value 5 5 5 5
o No 3 3 3 3
No Info on Data No Info on Data 3 1 1 1
Field Field
Component Score / Level Roll-Ups
Authenticity 10
Compliance 15
sty 12.5
Reliability 10
gree 10 10.0
Weighted Score 73;;:‘:':;;’ 10.6

32
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How to Implement the Data Quality Score

> For an poorly understood system the data quality
score is arrived at through an audit process

”~

ol Itrternal
Asditor

4, Aodit J'

/,6
ee
=

[ ~
> How do we extrapolate the audit results to the

system as a whole?

_— 'y i@ﬁ:r

gti



Two Sub-Systems: 5,000 Data Aggregations Each

> Sub-system 1: > Use the following stationary distribution :

— 90 Audits o8 = (”‘ff(;gg;if;)f )
> 60 Bad > This distribution estimates the number of "
> 30 Good system components k out of a total of N % s
that are in a good state given D 0004
> Sub-system 2: negative (Down) and U positive (Up) 2002
| influences (Bad and Good audit results -/ N
— 6 Audits : T A (. .,
respectively) 0 10,0 w0 40 500
> 2 Bad

> The distribution behaves very similarly t0  Harmon, b, etal., Predicting economic market
> 4 GOOd the Beta d . . crises using measures of collective panic. 2011.
Istribution

PHMSA RISK MODEL WORK GROUP 34 gtla




Probability Distribution for The Audit Results Example

2 Probabilty Estmate of the Numbar of Systom Locations with Good Data Qualty Basad on Audit Results
> The two probability density (SSEES
functions obtained for the |
two audit cases presented
can be used to simulate
locations with good data
guality based on the audit
results

POF

TN AT TANORNGE S TR
Number of System Locations with Good Data Qualty
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Simulation Count

900

700

8

8

100

(=]

10,000 Simulations of the Number of System Locations with Good Data Quality Based on Audit Results
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[ case 1 Audit Results: 4 Good 2 Bad
[case 2 Audit Results: 30 Good 60 Bad
Case 1: 2.5% Lower Credible Bound

— — —Case 2: 2.5% Lower Credible Bound
Case 1: Median

= — =Case 2: Median

Case 1: Mode - Most Likely Value

— — —Case 2: Mode - Most Likely Value
Case 1: Mean - Expected Value

= — —=Case 2: Mean - Expected Value
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What to do with the Data Quality Distribution Results

Intemnal Environment

>This Is a risk tolerance discussion T T
that has to tie back in to the '
Risk Governance/

Risk Management/

Risk Assessment

framework of the organization.

———— —— ——— —— ——

e
o
c
™
.-
=
o
-
x
K]
[~

IRGC Prumework

L. Pro-asssument

|

|

|

|

|

|
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|

2 Appraisal I
A Guracteriztion and Evalumlon |
4 Mamagoment I
S Conn o beatd on |
|

|

|

|

|

|

|

|

|

|

(E(E

Objective Setting

Event Identification
) t '
i Risk Assessment

(‘

43
Y ()
e ¢

D
z %
Risk Response
Appetits
Control Activities <
Information & Communication

Monitoring

-
g
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How to Address the Risk Tolerance Problem

System Workflow
- Human Interaction

> Address the organization, processes, and
the physical system

> Select program/data quality measures
and periodically evaluate them

 Historical Data

> Quantify the causal relationship of root SME RACI Chart

~ Operator Qualification

causes of each threat . Qualityof Data

> Incorporate the historical data, subject
matter expert opinion, and belief about |
collected data ” Analytics

~ Process Automation

> Consider the interactive nature of threats
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Risk Assessment of a Pipeline System

— ( Segment 1 J ,_!' Data collection J

l

Segment 2 ] Data qeality l’—*[ Beta distribution ]
i Pipe system \ { g L :

components , l 4
o ] Threats |
Material < Segment i — (9 categories) Decision tree
*  Part name \
*  Manufacturer i

* Installation 2
\ / ‘ Likelihood —-[ Bayesian network ]

ke Consequence J

l

- [ Segment n ] ~L Risk
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Simplified Process Workflow

Pipeline Integrity Management
Risk Assessment

Milestone 1

PHMSA RISK MODEL WORK GROUP
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Data Entity Relationships
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Process Is Readily Automated

= - = - oy R o ;-
'| '---] ’I. s } :--m] 'l‘.:;"'] 2oty B e | © ' 4 i Data quality measures
_‘;_g_ - L J .’\
" F ". ~7 — — — —
Bayeslan LOAP | — ! -
Network ' '
‘; Human £ ‘ ~o / — . /
XML interaction \ +
Java/Ces seWe'b - . BEZAGI i Compute DQ measire score
— - XML ~Seyces Service "——— Update 8eta distribution
| | Interface \ vut - 1
‘. | .
REST i —— Y

Define anafytics Define interface Read/write
using Q0P protocol database —— o
- Invoke the web service by clicking

the button
v Pipe segments /
Segment 1D Failure risk * b [einges
S
+ &
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Node by Node Data Quality Consideration

> Conceptually, greater data quality measure value means higher confidence about the data, which is equivalent to smaller o value in
likelihood function

> Assume the data quality of each threat is determined by a Beta distribution Beta(«;, ;)
ai

a; + Bi
> a; and [; will be updated based on the value of data quality measures such as authenticity, compliance, reliability, transparency, and

pedigree

Measure Value High High
Prior a=1l f=1 2 1 2 2 3 2 3
Updated 2 1 2 2 3 2 3 3 3 4
Final Beta(a=3, f=4)—DQ=mean=3/7

DQ; = mean =

> For continuous nodes, introduce a measurement error a(1-"DQ" )
> For ranked nodes, adjust probability histogram to increase/decrease uncertainty
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Data Quality Effect — Can be Extended to Consequence
Measures for Benefit/Cost Analysis of Improved Data Quality

Data Quality | EnvironmentDamage Population Density | Proximity to Pipeline Property Damage '*';"'f”' i

Medium Medium Medium Medium 3 3% = mvea
High 0Q Score Medium (100%) Medium (100%) Medium (100%) Medium (100%) g . ST S —
low  Medum  High tow  Medum High Ltow  Medium High fLow  Medum  High e | s | e : "
LowRQ3core | ox 60%  20%  20% 60% 200 20% 60%  20% 20%  60%  20% : - 1 —— = ——
[ [Ty | | = wiN 2 TN . Pepttanion Dunsty Preximity 10 Pipele
o] Vary Low oo SIS evds Very Law {850 08 Very Close § ] 2o
Low Low . - Low 4 20% Closs £ 20%
Madary 1% s b"“ —. Wedum L 20% B
e | vy o T Hign {0 20% Mechon B 2o
T S L] s Rt Vaey Hign {0 20% veryFar [ 2%
\ ! Vary Low .
e \ / -.:I-:}: " i) 2
" o \ f by
[Fed ST \ '," o bags | —
.mz: \ / —_— 1 b t:l:':v-!ln-un
Trrrsas) / ory Low 488 Property Damage
S D wedn 1 0 VoL 0%
"4 Corowmmmce of Fatar . . . '—:’O\ =H
_~ Likelihood of Failure vy 0 B 20 wesum 159 308
[Fi TTIN Verysbgh £ 20%
ree
Py M
. H H Consequence of Fathre
Lower Uncertainty Higher Uncertainty Ver Low [T U598

Low {5 22837%
Medum {0 45 248
Hoh §5] 23.437%

Vary +igh { 1 038%

Consequence of Failure
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Direct Tie In to Six Sigma Approaches

> To investigate the effect of likelihood function, it is assumed
that the pressure of a pipeline system follow a normal
distribution 8~N (ug, 09%)
Assume the value from the measurement system x’

x'=60+c¢

where the measurement error term e~N (0, o)

Therefore, the posterior distribution of the pressure given the
measurement x' is given as

2 2.7
_ o Uy + 0y x)z

’ [V}

(6 — o)? (x' — )2 0~ 75 42

POI)  exp(= 5 )exp(— 5 —2)  exp( T )
0% + 02

> The uncertainty of the posterior distribution depends on

ivial to show that values of ¢ produce higher uncertainty
in the posterior distribution 6

PHMSA RISK MODEL WORK GROUP

Figure 3: Traditional Management View vs. Six Sigma Philosophy

Traditional Management View

Prevention
and Appraisal
Cosls

Fallure Costs

Costs

Defect Level —— 0% The Six Sigma Philosophy | 2n¢ Appraisal
% 20}

-----

Failure Costs

Costs
Y

Defect Level —— 0%

Table 1: Sigma Level and the Cost of Quality

Sigma Level DPMO Cost of Quality as Percentage of Sales
2 293 000 More than 40%
3 67,000 25-40%
4 5,000 15-25%
5 233 5-15%
[} 3.4 Less than 1%
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Subject Matter Expertise
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Biases and Heuristics (Kahneman and Tversky 1982)

s Ambiguity effect—The avoidance of options for which missing
information makes the probability seem unknown. =Attentional bias—
Neglect of relevant data when making judgments of a correlation or
association. mAvailability heuristic—Estimating what is more likely by
what is more available in memory, which is biased toward vivid, unusual,
or emotionally charged examples. mBase rate neglect—~Failing to take
account of the prior probability. This was at the heart of the common
fallacious reasoning in the Harvard medical study described in Chapter 1.
It is the most common reason for people to feel that the results of
Bayesian inference are nonintuitive. ®sBandwagon effect—Believing
things because many other people do (or believe) the same. Related to
groupthink and herd behavior. sConfirmation bias—Searching for or
interpreting information in a way that confirms one’s preconceptions.
mDéformation professionnelle—Ignoring any broader point of view and
seeing the situation through the lens of one’s own professional norms.

mExpectation bias—The tendency for people to believe, certify, and
publish data that agrees with their expectations. This is subtly different to
confirmation bias, because it affects the way people behave before they
conduct a study. =Framing—ByY using a too narrow approach or
description of the situation or issue. Also framing effect, which is drawing
different conclusions based on how data are presented. =Need for
closure—The need to reach a verdict in important matters; to have an
answer and to escape the feeling of doubt and uncertainty. The personal
context (time or social pressure) might increase this bias. ®Outcome
bias—Judging a decision by its eventual outcome instead of based on
the quality of the decision at the time it was made. mOverconfidence
effect—Excessive confidence in one’s own answers to questions. For
example, for certain types of question, answers that people rate as 99%
certain turn out to be wrong 40% of the time. sStatus quo bias—The
tendency for people to like things to stay relatively the same.

Fenton, Norman. Risk Assessment and Decision Analysis with Bayesian Networks (Page 262). Taylor and Francis CRC ebook account. Kindle Edition
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Comparing Expert Models

Feature Weights Model
gnario 1 75 Hazard S0%

Loszes
Maodel A 61.056%
General 16.66T%
losaes & - @ Model B 36.94%
<-_St\en o1 10 c8n canario 1 38 Geograpbaal 33.333% |
d e Scenario 1 : Soit Evidence
L . Losses et Losaes
cenario 1 100 enario 1 55 | conario 1 G4 \
; ; l Hazard Features Score General Features Score \‘\ Geography Feature

Region X Region Y Region Z ModdA-rss Model A 3% Modd A %
AQ'055% A 11055% 2811 055% wodel 8 [l 2% Model B T Model B 0%
! i

B

13 5081 EMAENCE hot Scenario 1 : Soft Evidence = Soft Evidence |

cenano 1 5

5 89.045% B 898.945%

Ny T

Model

> |t Is possible to construct hybrid Bayesian
networks that compare the performance of

A & v

e I T R T competing expert models given different data

0016 0.0080 0.01
0o oo 0o

BB G45%

f

ey Sanap -

"Soobooe | | W Soooco s 9 ©o

g*gee £S288 5 8 = ; i is Wi i

2 5 @ Fenton, Norman. Risk Assessment and Decision Analysis with Bayesian Networks (Page 320 - 324).

Taylor and Francis CRC ebook account. Kindle Edition
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Optimization
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How to Optimize Risk Reduction Activities

> This is a vast topic with many well defined solution approaches that we 7%
cannot even begin to address adequately in a single session 3 e

> Monte Carlo simulation can be used to good effect in evaluating a large = Y [ T RN AR
number of alternative approaches A il 6 6 e ) A

> It is important to evaluate many diverse approaches and identify which == | "
approach is best in particular situations (SITUATIONAL AWARENESS) . '/I/ = A

> Constant Bayesian updating of the underlying probability distributions

and re-running simulations is helpful

Cost

> Causal networks will help define the optimization problem better g =] J— —

> Approaches that reduce system variance will have great effect o 4000 ¥ e R R~ T T e o e

,,,,,,,,,

> Prompt mitigation and repair of identified system anomalies will help
reduce the likelihood of higher order system interactions that can be
problematic

qt



Applying the Causal Framework to Armageddon

Fenton, Norman. Risk Assessment and Decision Analysis with Bayesian Networks (Page 46). Taylor and Francis CRC ebook account. Kindle
Edition.

mRisk measurement is more meaningful in the

. T Control
context; the BN tells a story that makes sense. . o = e
This is in stark contrast with the simple “risk st i R m«l&:: Y E——
ope . . cad " i 99.9% Sone 100%
equals probability times impact” approach e JEox | [ 1rue] i Tl e | |_‘ o
where not one of the concepts has a clear
unambiguous interpretation. mUncertainty is i
o[ . Event Meteor strikes Earth
guantified and at any stage we can simply read Meteor srikes Earth e [ M
o . . False {0.899% SRS [0.1%
off the current probability values associated with o _mm . = b oamined [l P b"-’s’;ﬁ |
M M : ove e m‘epn?
any event. "It provides a visual and formal e Fae JO %
mechanism for recording and testing subjective S oue Jlox Compuence A -
AV ss of life
probabilities. This is especially important for a Losoliie — R
False 4 5.359% 4596%
risky event that you do not have much or any T’““b"‘-"“" 2 L
relevant data about (in the Armageddon
Figure 2.18 Initial risk of meteor strike. Figure 2.19 The potential difference made by Bruce Willis and crew.

example this was, after all, mankind’s first
mission to land on a meteorite).
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KUUUB Factors and Other operational Risks

Fenton, Norman. Risk Assessment and Decision Analysis with Bayesian Networks (Chapter 11). Taylor and Francis CRC ebook account.

Kindle Edition.

> Known Unknowns

> Unknown Unknowns

> Blas

P{Loss) R
N ¥<< Median loss

. 99% percentile

(1 in 100 year loss)

Magor improvement | 2775%
Major improvesnent § L57% Subntantial improvement §5.556%
Substastial imspeovwenent { 3.14% w-lﬂm
lipeuvesent | 78098 No chunge 55.556%
S | N T
Degradation § 10.585% Subatantial degesdation §5.556%
Sulstantial degradaton | 7.849% Mujor degradation ] 2776%
Major L57% i
P
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provere rolomul MM B 1
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Hlgal Fame | O.11BIYS Begal Faume | 0015628
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|

= 5 y
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- I
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Figure 11.15 KUUUB model example. adjusting a financial loss estimate.

: : : f Loss, $

\

Expected Losses

\"

Unexpected Losses

Figure 11.19 Loss distribution with 99% VaR and median losses.
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Figure 11.18 BN loss event model for rogue trading process with superimposed marginal probability distributions.
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Discussion and Questions
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Additional Slides On Integrating
Data Quality into Risk Asessment
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Stochastic Risk Analysis of
Gas Pipeline with Bayesian
Statistics
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Deterministic Risk Analysis

> Most common guantitative risk assessment method

> Estimates single-point value for discrete scenarios such as worst case, best
case, and most likely outcomes

> Considers only a few outcomes, ignoring all other possibilities
> Disregards interdependence between inputs

> Ignores uncertainty in input variables

PHMSA RISK MODEL WORK GROUP 56
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Stochastic Risk Analysis with Bayesian Statistics

> Advanced guantitative risk assessment method
> Estimates probability distribution of the risk

> By using probability distributions, variables can have different probabilities of different
outcomes

> Uncertainties in variables are described by probability distributions
> Probabilistic results show not only what could happen, but how likely each outcome is
> Allows scenario analysis and sensitivity analysis

> Possible to model interdependent relationships between input variables

gti



Bayesian Statistics

> Quantitative tool to rationally update subjective prior beliefs in light of new evidence.

[ Posterioroc Prior X Likelihood ]

P(0|D) = P(D|0) P(6)/P(D)
0 is the parameter
P(0) is the prior
P(6|D) is the posterior
P(D|0) is the likelihood

P(D) is the evidence

PHMSA RISK MODEL WORK GROUP 58
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lllustrative Pipeline Network for Example in Following
Slides

L Synthetic gas pipeline network
of 120 components (e.g.,
joints, piping, etc) divided into:

= 3 regions

= 4 segments per region

= 10 components per segment

Y sth Wolf Road |

O Risk analysis can be performed
at component level, segment
level, or region level

| awrance Avenue
ensStreetap, under ODbL:

[
® | o

gti
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Component Failure Threat Types from ASME B31.8S
Standard

> Time-Dependent Threats * Time-Independent Threats
— Internal Corrosion * Incorrect Operations Procedure
— External Corrosion * Weather and Outside Force

— Stress Corrosion Cracking * Third Party Damage

> Resident Threats
— Manufacturing Defects
— Construction or Fabrication Defects

— Equipment Failure
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Probability of Component Failure

> Probability of Failure over time = fitzpt f]n=1 f::l w; . f(t, xj,yk) dy dx dt

— X, Y, and t represents threat type, input variable, and time instance respectively.
— [t3, tp] Is the time interval for which likelihood of failure is calculated

— n is the total number of threat type (=9 for gas pipeline per AMSE B31.8S)

— m is the total number of input variables responsible for a given threat type

— where w; Is the weight applied for each input variable from threat model

> f(t, X, y) Is calculated from the Beta distribution of component failure attribute as
shown in the next few slides.
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Probability of Component Failure

1. Determine prior belief P(6) on parameters 6 €[0,1] where 0 Iis always either
success (1) or failure (0)

—Beta distribution guantifies the prior beliefs for binomial outcome.
— The probability density function of the beta distribution is
P(O|a,B) = 6°'(1 — 6)F7'/B(a, B)

where B(a, ) acts a normalizing constant so that the area under PDF
sums to one.

— Initially, ignorant prior of B(ax = 1, = 1) is used in the very first run.
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Probability of Component Failure

2. Determine likelihood function.

—Bernoulli distribution is well-suited for the Boolean-valued outcome
usually labelled as ‘success’ (1) and ‘failure’ (0), in which it takes the
value 1 with probability p and the value O with probability 1-p.

— The probability mass function of the distribution is

f(k,p) = p*(1 —p)**
where k € {1,0}.
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Probability of Component Failure

3. Determine posterior probability function of 6 €[0,1].

> Posterioroc Prior x Likelihood
p(0)
P(D)

— Bernoulli likelihood and Beta prior are conjugate pairs — as a result, the posterior is a Beta
distribution. The conjugate priors simplifies the calculation of posterior distribution.

>P(0|D) = P(D|0) where, P(D) = [y P(D,6)d6

— The computation of posterior distribution is a complex process (example, integration for
P(D)) and therefore a numerical approximation method instead such as Markov Chain
Monte Carlo (MCMC) is needed.

— Posterior Beta distribution = MCMC (Beta prior, Bernoulli likelihood)
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Probability of Component Failure using Markov Chain
Monte Carlo

Metropolis-Hastings algorithm

1.
2.
3.

4.
D.
6.

Begin the algorithm at the current position in parameter space (9., rent)
Propose a "jump" to a new position in parameter space (6,.,,)

Accept or reject the jump probabilistically using the prior information and
available data

If the jump is accepted, move to the new position and return to step 1
If the jJump Is rejected, stay at current position and return to step 1

After a set number of jJumps have occurred, return all of
the accepted positions
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Probability Distribution of Component Failure
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Consequence of Failures

Five Categories of Consequences

* Very Low
* Low
e Medium

* High
e Very High

Medium
8
7
6
5
Z
24
a
3
2
1
0
00 02 04 06 08 10

Consequence of Failure
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Very Low
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Stochastic Risk Analysis

Risk = Probability of Failure X Consequence of Failure

— RiSK
10 {1 — Probability of Failure

- Consequence of Failure

8

6 4

4 -

2

0 4

03 04 0.5 0.6 0.7 08 09 10 .
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Implication of Data Quality in Risk Analysis

> Integrity * Beta Distribution B(«, )
e Startwitha =1, =1
— Authenticity
. : * « = a+ 1 (if Authenticity = TRUE) +
Compliance % gl; %Omp“gnce — T?*%U%‘f
. Lf Transparency = +
Transparency 1 (7 Reliability = TRUE) +1 (if Pedigree =
— Reliability TRUE)
> Pedigree * B =B + 1 (if Authenticity = FALSE) +
1 (if Compliance = FALSE) +
1 (if Transparency = FALSE) +
1 (if Reliability = FALSE) +
1 (if Pedigree = FALSE)
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