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 The number of words we need to 

describe a situation

Complexity is closely related to 

information content

─ Need a lot of words to describe 

everything in this picture

─ We need to describe each item as 

they are different from the others

─ Descriptions are at a small scale

Definitions: Complexity
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Definitions: Complexity – Less Complex

Need a fewer words to describe 
everything in this picture 

 There is more commonality

─ There are common patterns at 
large scale

─ Two colors

─ Two teams

─ Focus
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Definitions: Complexity – Simple

• Need even fewer words to describe 
this picture 

• Ignore the internal details of the 
person

• Ignore the organization of the snow 
molecules

• Only need the mass of the skier,  
the angle of the slope and the 
amount of friction
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Definitions: Complexity vs. Scale
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Highly Engineered Systems – Very Complex
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Statistics  Probability  Physics
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Predicting the Future 
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Why is The Past a Poor Predictor of the Future?

 There are at least two reasons why the past is a poor predictor of the future:

1. Different system states due to interactions take a long time to manifest 

themselves

2. Independence of stochastic events with known probability p

a) The current event is not influenced by the past – the process has no memory

b) In reality we infer unknown p from evaluation of the past events

i. This is an uncertain process that we will address in upcoming slides

ii. We may succumb to faulty logic in thinking that the past events actually do give us the 

probability of occurrence p
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System of Systems View

 In systems of systems there are many possible outcome states (COMPLEXITY)

We need to enumerate all of these states 

We need to count how many times each state occurs (PROBABILITY)

 It takes many interactions over a long timeframe to see all states

 A purely empirical approach based on reaction to what has already happened 

will be blind to the majority of outcome states

 It we use a purely empirical approach we will be surprised by new lower 

probability outcome states

We will not understand how they came to be
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Progression of System Fault Severity Due to Sub-System 

Interactions

Working assumption that 

more simultaneous sub-

system faults that interact 

leads to greater 

consequence

 Backed up by NTSB and 

other investigations of 

industrial disasters 

0 sub-
system 
faults

1st sub-
system 

fault

5th sub-
system 

fault

2nd sub-
system 

fault

3rd sub-
system 

fault

4th sub-
system 

fault
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Operations

Simple Fault

Significant 
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Major Fault

Catastrophic 
Fault

Catastrophic 
Fault
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Spatio-Temporal Simulation of Interactions

• Simulate a system with five 
sub-systems

• Each has a 30 year expected 
lifetime (50% likelihood of 
system anomaly)

• Each has a different rate of 
reaching 50% likelihood of 
system anomaly in 30 years

• Use logistic distributions to 
model each sub-system
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Cumulative Interactions Over 30 Years

• 10,000 spatial locations 
where five sub-systems 
can interact

• 1,000 simulations of 
possible combinations of 
the sub-system states at 
each spatial location

• 10,000,000 total 
interactions evaluated

• Count the number 
occurrences of 
0, 1, 2 ,3,4 or 5 faults at a 
location



16PHMSA RISK MODEL WORK GROUP 

One in a Million Threshold for Cumulative Interactions

• 1 system fault always exceeds 

1 × 10−6 likelihood of 

occurrence

• 2 interacting faults – in year 3

• 3 interacting faults – in year 

13

• 4 interacting faults – in year 

19

• 5 interacting faults – in year 

25

10,000,000 interactions were evaluated. 
The one in a million threshold is 10 parts 
in 10,000,000 – the maximum z axis 
bound in the current plot.
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Interactions in Each One Year Timeframe

Count the number of 

occurrences of 

0, 1, 2 ,3,4 or 5 faults at a 

location in each one year 

timeframe
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One in a Million Threshold for Interactions in a Specific Year

• 1 system fault always 
exceeds 1 × 10−6
likelihood of occurrence

• 2 interacting faults – in 
year 5

• 3 interacting faults – in 
year 17

• 4 interacting faults – in 
year 23

• 5 interacting faults – in 
year 27

10,000,000 interactions were evaluated. 
The one in a million threshold is 10 parts 
in 10,000,000 – the maximum z axis 
bound in the current plot.
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Tabular Depiction of the Information in the 

Previous Four Slides
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Probability Distributions:

Predicting the Next Outcome 
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How to Develop Distributions for Risk Models

 We need to identify possible system states

 Each time we inspect the system it is either in a 
particular state or not

 We count each outcome separately –is in state k, is not 
in state k

 This is a Bernoulli process

A Bernoulli process is a finite or infinite sequence of independent random variables X1, X2, X3, ..., 
such that
•For each i, the value of Xi is either 0 or 1;
•For all values of i, the probability that Xi = 1 is the same number p.
In other words, a Bernoulli process is a sequence of independent identically distributed Bernoulli 
trials.

Independence of the trials implies that the process is memoryless. Given that the probability p is 
known, past outcomes provide no information about future outcomes. (If p is unknown, 
however, the past informs about the future indirectly, through inferences about p.)

https://en.wikipedia.org/wiki/Bernoulli_process

https://en.wikipedia.org/wiki/Statistical_independence
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Independent_identically_distributed
https://en.wikipedia.org/wiki/Bernoulli_trial
https://en.wikipedia.org/wiki/Bernoulli_process
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The Past Informs About the Future Indirectly, Through 

Inferences About p

Counting the number of times a 

system is in state k gives an 

estimate of the probability p of 

being in state k

How certain are we about this 

inference?

 Bayesian Inference using the 

Beta distribution quantifies the 

uncertainty in our inference

In Bayesian inference, the beta distribution is the conjugate prior probability 
distribution for the Bernoulli, binomial, negative binomial and geometric 
distributions. For example, the beta distribution can be used in Bayesian analysis 
to describe initial knowledge concerning probability of success such as the 
probability that a space vehicle will successfully complete a specified mission. The 
beta distribution is a suitable model for the random behavior of percentages and 
proportions.

https://en.wikipedia.org/wiki/Beta_distribution

P 4/6 = 2/3. (1-p) 1/3

https://en.wikipedia.org/wiki/Beta_distribution
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Beta(4,2) and Beta(5,3)

Beta(5,3)

Beta(4,2)

alpha beta mean mode LCB UCB

4 2 0.667 0.750 0.284 0.947

5 3 0.625 0.667 0.290 0.901

 The Beta distribution has two 

parameters:

─ Beta(alpha, beta)

─ Alpha – count of successes

─ Beta – count of non-successes

𝑚𝑒𝑎𝑛 =
𝛼

𝛼+𝛽
𝑚𝑜𝑑𝑒 =

𝛼−1

𝛼+𝛽−2
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How to Develop Beta Distributions from Data

1. Start by defining our initial belief 

about the probability of success or 

failure

a) In the absence of solid knowledge use 

an ignorant prior: Beta(1,1)

b) An ignorant prior defines the state where 

we have a 50% probability of success or 

failure, but any proportion of success or 

failure is equally likely

c) In other words we do not have a clue
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Bayesian Updating for the Beta Distribution is Simple 

and Painless

2. Setup a simple spreadsheet

3. Enter an ignorant prior in the first cells

4. Use the Excel function  BETA.INV(D$1,B4,C4) 

to calculate the credible bounds

5. Calculate the mean directly from the data

Credible Bounds 95% 0.025 0.975

Data 
Point

Alpha Beta LCB Mean UCB
TRUE / 
FALSE

0 1 1 0.025 0.500 0.975 N/A

1

2

Credible Bounds 0.95 =(1-C1)/2 =1-D1

Data Point Alpha Beta LCB Mean UCB TRUE / FALSE

0 1 1 =BETA.INV(D$1,B4,C4) =IF(G4<>CHAR(32),B4/(B4+C4),CHAR(32)) =BETA.INV(E$1,B4,C4) N/A

1 =IF(G5<>CHAR(32),B4+G5,CHAR(32)) =IF(G5<>CHAR(32),C4+(1-G5),CHAR(32)) =IF(G5<>CHAR(32),BETA.INV(D$1,B5,C5),CHAR(32)) =IF(G5<>CHAR(32),B5/(B5+C5),CHAR(32)) =IF(G5<>CHAR(32),BETA.INV(E$1,B5,C5),CHAR(32)) =CHAR(32)

2 =IF(G6<>CHAR(32),B5+G6,CHAR(32)) =IF(G6<>CHAR(32),C5+(1-G6),CHAR(32)) =IF(G6<>CHAR(32),BETA.INV(D$1,B6,C6),CHAR(32)) =IF(G6<>CHAR(32),B6/(B6+C6),CHAR(32)) =IF(G6<>CHAR(32),BETA.INV(E$1,B6,C6),CHAR(32)) =CHAR(32)
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Bayesian Updating for the Beta Distribution is Simple 

and Painless

6. Increment the Alpha column by 1 for a 

successful outcome

7. Increment the Beta column by one for 

an unsuccessful outcome

Data Point Alpha Beta LCB Mean UCB
TRUE / 

FALSE

0 1 1 0.025 0.500 0.975 N/A

1 2 1 0.158 0.667 0.987 TRUE

2 2 2 0.094 0.500 0.906 FALSE

Credible Bounds 95% 0.025 0.975

Data Point Alpha Beta LCB Mean UCB TRUE / FALSE

0 1 1 =BETA.INV(D$1,B4,C4) =IF(G4<>CHAR(32),B4/(B4+C4),CHAR(32)) =BETA.INV(E$1,B4,C4) N/A

1 =IF(G5<>CHAR(32),B4+G5,CHAR(32)) =IF(G5<>CHAR(32),C4+(1-G5),CHAR(32)) =IF(G5<>CHAR(32),BETA.INV(D$1,B5,C5),CHAR(32)) =IF(G5<>CHAR(32),B5/(B5+C5),CHAR(32)) =IF(G5<>CHAR(32),BETA.INV(E$1,B5,C5),CHAR(32)) TRUE

2 =IF(G6<>CHAR(32),B5+G6,CHAR(32)) =IF(G6<>CHAR(32),C5+(1-G6),CHAR(32)) =IF(G6<>CHAR(32),BETA.INV(D$1,B6,C6),CHAR(32)) =IF(G6<>CHAR(32),B6/(B6+C6),CHAR(32)) =IF(G6<>CHAR(32),BETA.INV(E$1,B6,C6),CHAR(32)) FALSE

Credible Bounds

0.95 =(1-C1)/2 =1-D1
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Data 

Point
Alpha Beta LCB Mean UCB

TRUE / 

FALSE
Inspections

Actual 

Probability

0 1 1 0.025 0.500 0.975 N/A N/A 0.333

1 1 2 0.013 0.333 0.842 FALSE 0 0.333

2 1 3 0.008 0.250 0.708 FALSE 0 0.333

3 1 4 0.006 0.200 0.602 FALSE 0 0.333

4 2 4 0.053 0.333 0.716 TRUE 1 0.333

5 3 4 0.118 0.429 0.777 TRUE 1 0.333

6 3 5 0.099 0.375 0.710 FALSE 0 0.333

7 3 6 0.085 0.333 0.651 FALSE 0 0.333

8 3 7 0.075 0.300 0.600 FALSE 0 0.333

9 4 7 0.122 0.364 0.652 TRUE 1 0.333

10 4 8 0.109 0.333 0.610 FALSE 0 0.333

11 4 9 0.099 0.308 0.572 FALSE 0 0.333

12 4 10 0.091 0.286 0.538 FALSE 0 0.333

13 4 11 0.084 0.267 0.508 FALSE 0 0.333

14 5 11 0.118 0.313 0.551 TRUE 1 0.333

15 6 11 0.152 0.353 0.587 TRUE 1 0.333

16 7 11 0.184 0.389 0.617 TRUE 1 0.333

17 7 12 0.173 0.368 0.590 FALSE 0 0.333

18 7 13 0.163 0.350 0.566 FALSE 0 0.333

19 7 14 0.154 0.333 0.543 FALSE 0 0.333

20 8 14 0.181 0.364 0.570 TRUE 1 0.333

21 8 15 0.172 0.348 0.549 FALSE 0 0.333

22 9 15 0.197 0.375 0.573 TRUE 1 0.333

23 9 16 0.188 0.360 0.553 FALSE 0 0.333

24 9 17 0.180 0.346 0.535 FALSE 0 0.333

25 10 17 0.202 0.370 0.557 TRUE 1 0.333

26 10 18 0.194 0.357 0.540 FALSE 0 0.333

27 10 19 0.186 0.345 0.524 FALSE 0 0.333

28 10 20 0.179 0.333 0.508 FALSE 0 0.333

29 10 21 0.173 0.323 0.494 FALSE 0 0.333

30 11 21 0.192 0.344 0.514 TRUE 1 0.333

0.333Credible Bounds 95% 0.025 0.975 Inspection Proportion

Bayesian Updating for an inspection Process
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Example of Beta Distributions and Bayesian Updating 

Used to Evaluate Risk Under Uncertainty

 22 out of 365 fusions failed in 

service

Random sampling plan 

developed to assess quality 

of non-failed fusions

Hypergeometric distribution 

used to predict findings 

based on prior data –

equivalent to an exact Fisher 

test for significance
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Credible Bounds for Sub-Populations and Entire 

Population

Size

Posterior 
Beta 

Distribution 
alpha

Posterior 
Beta 

Distribution 
beta

Posterior 
Probability 
of Failure

2.5% Lower 
Credible 
Bound

97.5% Upper 
Credible 
Bound

16 5.028 1.972 71.83% 37.1% 95.8%

14 3.000 1.000 75.00% 30.2% 99.2%

12 2.759 1.241 68.97% 24.0% 98.0%

10 3.267 1.733 65.33% 24.7% 95.5%

8 5.000 1.000 83.33% 48.7% 99.5%

6 9.043 1.957 82.21% 56.7% 97.6%

Entire Population
(Not additive with 

results above)
25.115 1.885 93.02% 81.4% 99.2%

 Credible bounds for each sub-

population heavily impacted by 

number of samples

 All results are statistically significant 

at the 0.05 level per the 

hypergeometric prior probabilities

 Can combine sub-populations as the 

installations were performed by a 

single contractor, using a single 

process in the same time frame.
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Incorporating Data Quality Metrics 
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Simple Scoring of Data Quality Attributes

 At the March meeting of the 

Risk Model Work Group we 

discussed methods for 

assigning data quality scores

We can subjectively choose a 

line of demarcation for the 

Weights Score :

─ 12.5 Good

─ < 12.5 Bad
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How to Implement the Data Quality Score

 For an poorly understood system the data quality 

score is arrived at through an audit process

 How do we extrapolate the audit results to the 

system as a whole?
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Two Sub-Systems: 5,000 Data Aggregations Each

 Sub-system 1:

─ 90 Audits

> 60 Bad

> 30 Good

 Sub-system 2:

─ 6 Audits

> 2 Bad

> 4 Good

 Use the following stationary distribution :

 This distribution estimates the number of 

system components k out of a total of N 

that are in a good state given D 

negative (Down) and U positive (Up) 

influences (Bad and Good audit results 

respectively)

 The distribution behaves very similarly to 

the Beta distribution

Harmon, D., et al., Predicting economic market 
crises using measures of collective panic. 2011.
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Probability Distribution for The Audit Results Example

 The two probability density 

functions obtained for the 

two audit cases presented 

can be used to simulate 

locations with good data 

quality  based on the audit 

results
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What to do with the Data Quality Distribution Results

 This is a risk tolerance discussion 

that has to tie back in to the 

Risk Governance/

Risk Management/

Risk Assessment  

framework of the organization.
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How to Address the Risk Tolerance Problem

 Address the organization, processes, and 

the physical system

 Select program/data quality measures 

and periodically evaluate them

 Quantify the causal relationship of root 

causes of each threat

 Incorporate the historical data, subject 

matter expert opinion, and belief about 

collected data

 Consider the interactive nature of threats
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Risk Assessment of a Pipeline System
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Simplified Process Workflow
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Data Entity Relationships
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Process is Readily Automated
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Node by Node Data Quality Consideration

 Conceptually, greater data quality measure value means higher confidence about the data, which is equivalent to smaller 𝜎 value in 
likelihood function

 Assume the data quality of each threat is determined by a Beta distribution 𝐵𝑒𝑡𝑎 𝛼𝑖 , 𝛽𝑖

𝐷𝑄𝑖 = 𝑚𝑒𝑎𝑛 =
𝛼𝑖

𝛼𝑖 + 𝛽𝑖
 𝛼𝑖 and 𝛽𝑖 will be updated based on the value of data quality measures such as  authenticity, compliance, reliability, transparency, and

pedigree 

 For continuous nodes, introduce a measurement error 𝜎(1−"DQ" )
 For ranked nodes,  adjust probability histogram to increase/decrease uncertainty 
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Data Quality Effect – Can be Extended to Consequence 

Measures for Benefit/Cost Analysis of Improved Data Quality
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Direct Tie in to Six Sigma Approaches

 To investigate the effect of likelihood function, it is assumed 

that the pressure of a pipeline system follow a normal 

distribution 𝜃~𝑁 𝜇0, 𝜎0
2

 Assume the value from the measurement system 𝑥′

 𝑥′ = 𝜃 + 𝜀
 where the measurement error term 𝜀~𝑁 0, 𝜎
 Therefore, the posterior distribution of the pressure given the 

measurement 𝑥′ is given as 

𝑝 𝜃 𝑥 ∝ exp(−
(𝜃 − 𝜇0)

2

2 × 𝜎0
2
)exp(−

(𝑥′ − 𝜃)2

2 × 𝜎2
) ∝ exp(−

(𝜃 −
𝜎2𝜇0 + 𝜎0

2𝑥′

𝜎0
2 + 𝜎2

)2

2 ×
𝜎2𝜎0

2

𝜎0
2 + 𝜎2

)

 The uncertainty of the posterior distribution depends on 
𝜎2𝜎0

2

𝜎0
2+𝜎2

. 

 It is trivial to show that values of 𝜎 produce higher uncertainty 

in the posterior distribution 𝜃
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Subject Matter Expertise
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Biases and Heuristics (Kahneman and Tversky 1982)

◾Ambiguity effect—The avoidance of options for which missing 

information makes the probability seem unknown. ◾Attentional bias—

Neglect of relevant data when making judgments of a correlation or 

association. ◾Availability heuristic—Estimating what is more likely by 

what is more available in memory, which is biased toward vivid, unusual, 

or emotionally charged examples. ◾Base rate neglect—Failing to take 

account of the prior probability. This was at the heart of the common 

fallacious reasoning in the Harvard medical study described in Chapter 1. 

It is the most common reason for people to feel that the results of 

Bayesian inference are nonintuitive. ◾Bandwagon effect—Believing 

things because many other people do (or believe) the same. Related to 

groupthink and herd behavior. ◾Confirmation bias—Searching for or 

interpreting information in a way that confirms one’s preconceptions. 

◾Déformation professionnelle—Ignoring any broader point of view and 

seeing the situation through the lens of one’s own professional norms.

◾Expectation bias—The tendency for people to believe, certify, and 

publish data that agrees with their expectations. This is subtly different to 

confirmation bias, because it affects the way people behave before they 

conduct a study. ◾Framing—By using a too narrow approach or 

description of the situation or issue. Also framing effect, which is drawing 

different conclusions based on how data are presented. ◾Need for 

closure—The need to reach a verdict in important matters; to have an 

answer and to escape the feeling of doubt and uncertainty. The personal 

context (time or social pressure) might increase this bias. ◾Outcome 

bias—Judging a decision by its eventual outcome instead of based on 

the quality of the decision at the time it was made. ◾Overconfidence 

effect—Excessive confidence in one’s own answers to questions. For 

example, for certain types of question, answers that people rate as 99% 

certain turn out to be wrong 40% of the time. ◾Status quo bias—The 

tendency for people to like things to stay relatively the same. 

Fenton, Norman. Risk Assessment and Decision Analysis with Bayesian Networks (Page 262). Taylor and Francis CRC ebook account. Kindle Edition
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Comparing Expert Models

 It is possible to construct hybrid Bayesian 

networks that compare the performance of 

competing expert models given different data 

Fenton, Norman. Risk Assessment and Decision Analysis with Bayesian Networks (Page 320 - 324). 
Taylor and Francis CRC ebook account. Kindle Edition
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Optimization
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How to Optimize Risk Reduction Activities

 This is a vast topic with many well defined solution approaches that we 

cannot even begin to address adequately in a single session

 Monte Carlo simulation can be used to good effect in evaluating a large 

number of alternative approaches

 It is important to evaluate many diverse approaches and identify which 

approach is best in particular situations (SITUATIONAL AWARENESS)

 Constant Bayesian updating of the underlying probability distributions 

and re-running simulations is helpful

 Causal networks will help define the optimization problem better

 Approaches that reduce system variance will have great effect

 Prompt mitigation and repair of identified system anomalies will help 

reduce the likelihood of higher order system interactions that can be 

problematic
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Applying the Causal Framework to Armageddon
Fenton, Norman. Risk Assessment and Decision Analysis with Bayesian Networks (Page 46). Taylor and Francis CRC ebook account. Kindle 

Edition. 

◾Risk measurement is more meaningful in the 
context; the BN tells a story that makes sense. 
This is in stark contrast with the simple “risk 
equals probability times impact” approach 
where not one of the concepts has a clear 
unambiguous interpretation. ◾Uncertainty is 
quantified and at any stage we can simply read 
off the current probability values associated with 
any event. ◾It provides a visual and formal 
mechanism for recording and testing subjective 
probabilities. This is especially important for a 
risky event that you do not have much or any 
relevant data about (in the Armageddon 
example this was, after all, mankind’s first 
mission to land on a meteorite).
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KUUUB Factors and Other operational Risks
Fenton, Norman. Risk Assessment and Decision Analysis with Bayesian Networks (Chapter 11). Taylor and Francis CRC ebook account. 

Kindle Edition.

 Known Unknowns

Unknown Unknowns

 Bias
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Discussion and Questions
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Additional Slides On Integrating 

Data Quality into Risk Asessment
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Stochastic Risk Analysis of 

Gas Pipeline with Bayesian 

Statistics
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Deterministic Risk Analysis

Most common quantitative risk assessment method

 Estimates single-point value for discrete scenarios such as worst case, best 

case, and most likely outcomes

Considers only a few outcomes, ignoring all other possibilities

Disregards interdependence between inputs

 Ignores uncertainty in input variables
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Stochastic Risk Analysis with Bayesian Statistics

 Advanced quantitative risk assessment method

 Estimates probability distribution of the risk

 By using probability distributions, variables can have different probabilities of different 

outcomes

 Uncertainties in variables are described by probability distributions

 Probabilistic results show not only what could happen, but how likely each outcome is

 Allows scenario analysis and sensitivity analysis

 Possible to model interdependent relationships between input variables
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Bayesian Statistics

 Quantitative tool to rationally update subjective prior beliefs in light of new evidence.

𝑃  𝐷 = 𝑃 𝐷  𝑃()/𝑃(𝐷)

 is the parameter

P() is the prior

P(|D) is the posterior

P(D|) is the likelihood

P(D) is the evidence

Posterior Prior × Likelihood 
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Illustrative Pipeline Network for Example in Following 

Slides

 Synthetic gas pipeline network 
of 120 components (e.g., 
joints, piping, etc) divided into:

▪ 3 regions
▪ 4 segments per region
▪ 10 components per segment

 Risk analysis can be performed 
at component level, segment 
level, or region level
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Component Failure Threat Types from ASME B31.8S 

Standard

 Time-Dependent Threats

─ Internal Corrosion

─ External Corrosion

─ Stress Corrosion Cracking

Resident Threats

─ Manufacturing Defects

─ Construction or Fabrication Defects

─ Equipment Failure

• Time-Independent Threats
• Incorrect Operations Procedure

• Weather and Outside Force

• Third Party Damage
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Probability of Component Failure

 Probability of Failure over time = 𝑖=𝑡׬
1

𝑡
𝑝 𝑗=1׬

𝑛
𝑘=1׬
𝑚

𝑤𝑗, 𝑘
𝑓 𝑡𝑖, 𝑥𝑗, 𝑦𝑘 𝑑𝑦 𝑑𝑥 𝑑𝑡

─ x, y, and t represents threat type, input variable, and time instance respectively.

─ [t1, tp] is the time interval for which likelihood of failure is calculated

─ n is the total number of threat type (=9 for gas pipeline  per AMSE B31.8S)

─ m is the total number of input variables responsible for a given threat type

─ where wj,k is the weight applied for each input variable from threat model

 f(t, x, y) is calculated from the Beta distribution of component failure attribute as 
shown in the next few slides.
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Probability of Component Failure

1. Determine prior belief P() on parameters  ∈[0,1] where  is always either 
success (1) or failure (0)

─ Beta distribution quantifies the prior beliefs for binomial outcome. 

─ The probability density function of the beta distribution is

𝑃(𝜃|𝛼, 𝛽) = 𝜃α−1(1 − 𝜃)β−1/𝐵(𝛼, 𝛽)

where 𝐵(𝛼, 𝛽) acts a normalizing constant so that the area under PDF 
sums to one.

─ Initially, ignorant prior of 𝐵(𝛼 = 1, 𝛽 = 1) is used in the very first run.
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Probability of Component Failure

2. Determine likelihood function.

─ Bernoulli distribution is well-suited for the Boolean-valued outcome 

usually labelled as ‘success’ (1) and ‘failure’ (0), in which it takes the 

value 1 with probability p and the value 0 with probability 1-p.

─ The probability mass function of the distribution is

𝑓 𝑘, 𝑝 = 𝑝𝑘 1 − 𝑝 1-k

where 𝑘 ∈ {1,0}.
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Probability of Component Failure

3. Determine posterior probability function of  ∈[0,1].

> Posterior Prior × Likelihood 

>𝑃  𝐷 = 𝑃 𝐷 
𝑃 
𝑃 𝐷

𝑤ℎ𝑒𝑟𝑒, P(D) = ׬ 𝑃 𝐷,  𝑑

─ Bernoulli likelihood and Beta prior are conjugate pairs – as a result, the posterior is a Beta 
distribution. The conjugate priors simplifies the calculation of posterior distribution.

─ The computation of posterior distribution is a complex process (example, integration for 
P(D)) and therefore a numerical approximation method instead such as Markov Chain 
Monte Carlo (MCMC) is needed.

─ 𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝐵𝑒𝑡𝑎 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 = 𝑀𝐶𝑀𝐶 𝐵𝑒𝑡𝑎 𝑝𝑟𝑖𝑜𝑟, 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑
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Probability of Component Failure using Markov Chain 

Monte Carlo

Metropolis-Hastings algorithm

1. Begin the algorithm at the current position in parameter space (θcurrent)

2. Propose a "jump" to a new position in parameter space (θnew)

3. Accept or reject the jump probabilistically using the prior information and 
available data

4. If the jump is accepted, move to the new position and return to step 1

5. If the jump is rejected, stay at current position and return to step 1

6. After a set number of jumps have occurred, return all of 
the accepted positions
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Probability Distribution of Component Failure
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Consequence of Failures

Five Categories of Consequences
• Very Low
• Low
• Medium
• High
• Very High
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Stochastic Risk Analysis

𝑅𝑖𝑠𝑘 = Probability 𝑜𝑓 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 × 𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝐹𝑎𝑖𝑙𝑢𝑟𝑒
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Implication of Data Quality in Risk Analysis

 Integrity

─ Authenticity

─ Compliance

─ Transparency

─ Reliability

 Pedigree 

• Beta Distribution 𝐵 𝛼, 𝛽
• Start with 𝛼 = 1, 𝛽 = 1

• 𝛼 = 𝛼 + 1 𝑖𝑓 Authenticity = 𝑇𝑅𝑈𝐸 + 
1 𝑖𝑓 Compliance = 𝑇𝑅𝑈𝐸 + 
1 𝑖𝑓 Transparency = 𝑇𝑅𝑈𝐸 + 
1 𝑖𝑓 Reliability = 𝑇𝑅𝑈𝐸 + 1 (

)
𝑖𝑓 Pedigree =

𝑇𝑅𝑈𝐸

• 𝛽 = 𝛽 + 1 𝑖𝑓 Authenticity = 𝐹𝐴𝐿𝑆𝐸 + 
1 𝑖𝑓 Compliance = 𝐹𝐴𝐿𝑆𝐸 + 
1 𝑖𝑓 Transparency = 𝐹𝐴𝐿𝑆𝐸 + 
1 𝑖𝑓 Reliability = 𝐹𝐴𝐿𝑆𝐸 + 
1 𝑖𝑓 Pedigree = 𝐹𝐴𝐿𝑆𝐸


