

FACILITY PIPING, A RISK ASSESSMENT APPROACH

Matt Crist Equipment & Inspection SME Phillips 66 Pipeline LLC Houston, TX

UNKNOWNS WHICH NEED TO BE ANSWERED

- Where to start?
- What type of risk assessment would fit the facility setting?
- What tools are there to reduce risk?
- What inspection scope of work would provide the best evaluation of facility condition?
- What frequency would be needed to sustain facility integrity?

AGENDA

- Risk Reduction Process
- Risk Assessment Tool
- Consequence of Failure
- Likelihood of Failure
- Mitigation
- Success Stories
- Summary

RISK ASSESSMENT TOOL

- Establish a Risk Assessment Procedure
- Use of Corporate Risk Matrix
- Establish Consequences of Failure
 - HCAs
 - Business Impact
- Establish Likelihoods of Failure
 - External Corrosion
 - Internal Corrosion

CONSEQUENCES OF FAILURE

- High Consequence Areas
 - Drinking Water
 - Sole Source Aquifers
 - High Population Areas
 - Ecological Areas
- Product Type
- Manned / Unmanned Sites
- Business Impact

LIKELIHOOD OF FAILURE MODEL STRUCTURE

٠

2 Threats

- Internal Corrosion
- External Corrosion

4 Sub-Threats

- Aboveground
 Internal Corrosion
- Aboveground
 External Corrosion
 - Buried Internal Corrosion
- Buried External Corrosion

5 Likelihood Categories

- Facility Location
- Design and Piping Configuration
- Operations
- Current
 Mitigation
 Practices
- Failure Data

11 Likelihood Elements

- 1. Environment & Conditions
- 2. Piping Supports
- 3. Soil to Air Interfaces
- 4. CUI
- 5. Coating Buried Piping
- 6. Product Corrosiveness
- 7. Flow Type
- 8. Monitoring & Protection Programs
- 9. Inspection & Testing
- 10. Piping Work Process
- 11. Corrosion Incidents History

LIKELIHOOD OF FAILURE

WEIGHTS

Elements	15% Above Ground- External	20% Above Ground- Internal	43% Buried- Internal	22% Buried- External
1. Environment & General Facility Conditions	29%	18%	18%	27%
2. Piping Supports (External Corrosion)	10%	0%	0%	0%
3. Soil to Air Interface (External Corrosion)	8%	0%	0%	0%
4. Corrosion Under Insulation (CUI)	6%	0%	0%	0%
5. Buried Coating	0%	0%	0%	9%
6. Product Corrosivity	0%	13%	13%	0%
7. Flow Type	0%	9%	10%	0%
8. Monitoring & Protection Program	0%	20%	20%	17%
9. Inspection and Testing	23%	22%	21%	25%
10. Facility Piping Work Processes	8%	6%	6%	7%
11. Corrosion Incident History	17%	13%	13%	16%

MITIGATION OF INTERNAL CORROSION DEAD LEGS AND UNDERUTILIZE PIPING FOCUS

- Design
- Removal
- Purge & Isolation
- Operational
 - Flushing
- Chemical Treatment
- Inspection
 - Increased Inspection Cycles
 - Specific High Effectiveness NDE

MITIGATION OF EXTERNAL CORROSION

- Piping Supports Design
- Maintain Good Thermal Insulation
- Coatings & Thermal Insulation Specs
- Cathodic Protection (CP)
- Inspection
 - CP Surveys
 - Increased Inspection Cycles
 - Specific High Effectiveness NDE

HIGH EFFECTIVENESS NDE & SURVEYS TO REDUCE RISK

- Profile Radiography
- GWUT (Guided-Wave)
- Phased Array
- Long or Short Wave UT
- EMAT
- ILI MFL / UT Tools
- NDE Robots / Crawlers
- Tracer Gas Leak Detection
- P/S Potential Surveys
- ACVG / DCVG

NDE SCOPE OF WORK TO REDUCE RISK

CML	COVERAGE [%]									
	HCA				Non-HCA					
	Crude		Finish Product		Crude		Finish Product			
	Manned	Unmanned	Manned	Unmanned	Manned	Unmanned	Manned	Unmanned		
Buried Deadleg	100	100	50	100	50	100	25	50		
Above Ground Deadleg	100	100	25	50	50	100	25	50		
Buried Low Flow	100	100	25	25	50	50	25	25		
Above Ground Low Flow	100	100	10	10	25	50	10	10		
Soil to Air Interfaces	10	20	10	10	5	5	5	5		
Low Point Bleeds / Drains	20	50	5	10	10	25	5	5		
Over Water Piping	100	100	100	100	100	100	100	100		

NDE SUCCESS STORIES

GUL Indication

3 Medium (Cat 2) Indications 30% to 49% Wall Loss

- Profile RT
 - Drain was at 50% wall loss
- Tracer Gas
 - Leaking Sample Shack drain piping

SUMMARY

- Start evaluating likelihood of failure in facilities in HCA, then calculate relative risk and prioritize risk mitigations
- Use a scalable simplified risk assessment model based on threats that cause the majority and most severe failures in facilities
- Use a combination of tools making sure that the effectiveness of the mitigations are confirmed including high effective NDE methods
- The NDE scope of work targets high likelihood of failure configurations / locations generating a CML coverage based on the consequence of failure
- A risk based frequency from 3 to 10 years corrected with corrosion based frequency, whichever is shorter

