U. S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

Large Excess Flow Valve Group Meeting June 23, 2009 Arlington, VA

Bruce L. Paskett P.E. Principal Compliance Engineer

NW Natural Company Background

- ➤ Company founded in 1859
- ➤ Operate in Oregon and SW Washington
- ➤ Serve approximately 670,000 residential, commercial and industrial customers
- ➤ Designed, constructed, own and operate 609 miles of transmission main and 21,000 miles of distribution mains and services
- ➤#1-2008 J.D. Power and Associates Gas Utility Residential Customer Satisfaction Study

NW Natural and Pipeline Safety

NW Natural is committed to the <u>Safe</u>, <u>Reliable</u> and <u>Cost Effective</u> delivery of natural gas to our customers.

NW Natural and Pipeline Safety

Pipeline Integrity Management Programs-

- ➤ Cast Iron Replacement Program-1983 to 2000
- Bare Steel Replacement Program-2001
- Natural Forces (Geohazard) Program-2001
- > Transmission Integrity Management Program-2002
- Distribution Integrity Management Program-1983

Excess Flow Valve Background

- Excess Flow Valve Rule (1998)- Required customer notification of availability of EFVs for all new or replaced single family residential services
- ➤ DIMP Phase 1 Report-Four study groups concluded that EFVs can be a valuable risk mitigation tool, but should not be mandated
- ➤ 2006 PIPES Act-Congress mandated EFVs only for new and replaced single family residential services after June 1, 2008
- ➤ DIMP Rule NOPR-Requires operators to identify threats, prioritize risks, and implement measures to address risks
- ➤ GPTC DIMP Guidance suggests that operators consider the expanded use of EFVs as a possible additional / or accelerated action

EFV INSTALLATION LOCATION

NW Natural Experience With Excess Flow Valves

NW Natural began installing EFVs on all new and replaced single family residential services in 1999

- ➤ Company has installed over 160,000 single family residential EFVs
- ➤ Company has installed nearly 1,000 large capacity EFVs (2000 SCFH @ 10 psig) on single family residential services with large loads
- ➤ Company has considered, but not installed, EFVs on commercial or industrial applications due to concerns about installation cost and reliability of service

Key Learnings From Single Family Residential EFVs

- ➤ When properly sized, engineered and installed, EFVs function as designed if conditions remain static
- ➤ Excess Flow Valves require considerable engineering to size the EFV / service capacity to the customer's load
- LDCs may not know the ultimate load at the time of EFV installation
- ➤ May require a larger diameter service line, which materially impacts cost (+ \$ 500)
- >EFVs can't distinguish a major leak from a customer load of the same size
- ➤ EFVs are not designed to protect from a houseline failure (downstream of the meter)

Key Learnings From Single Family Residential EFVs

- No identifiable avoided incidents on NWN system
- Inability to clean service lines of foreign matter
- > Excavation damages without appropriate notification
- An incorrectly sized EFV does not function appropriately (Either no trip or false trips)
- Added customer loads result in false closures (tank-less water heater or emergency generator)
- Expensive and / or extremely difficult to remedy incorrectly sized EFVs due to excavation costs and municipal restrictions on street openings

Issues With Large Capacity EFVs

Customers want Safe, Reliable Service

- Operator doesn't know load at time of service installation
- Multi-family, commercial and industrial customers have far more load variability, routinely adding equipment / loads without notifying gas company (new boiler, process load, seismic valve)
- Commercial establishments subject to frequent changes of ownership, consumer product, gas equipment and load making the EFV unsatisfactory
- An incorrectly sized EFV does not function appropriately (Either no trip or false trips)
- Expensive and / or extremely difficult to remedy incorrectly sized EFVs due to excavation costs and municipal restrictions on street openings

Issues With Large Capacity EFVs

Case Study-Intel

- Continuous operation
- > Adds value as the chip moves down the process
- Natural gas used for HVAC, process control and burning VOC gases
- Customer installs redundant site facilities
- > Service interruption causes \$ 5-10 million loss
- ➤ EFV installation cost ≈ \$ 40,000
- Customer routinely adds new equipment, loads without notifying gas company
- Customer testing of plant equipment (e.g. seismic valves, boilers etc)

Summary of Large Capacity EFV Issues

- > EFVs only work for significant service line breaks
- Larger diameter service lines are less susceptible to a complete line break
- > EFVs can't distinguish a major leak from a load
- EFVs are not designed to protect from houseline failures
- Multi-family, commercial and industrial customers have far greater load variability and the risk of false trips

Summary of Large Capacity EFV Issues

- Commercial establishments are subject to frequent changes of ownership, consumer product, gas equipment and load, making the EFV unsatisfactory
- ➤ Financial or customer reliability impacts of false EFV trips may be extreme for commercial and industrial customers
- ➤ The cost to install a replacement EFV may be \$5-20,000 IF the municipality allows the street to be cut

Large Capacity EFV Recommendation

Under the Distribution Integrity Management (DIMP) Rule, operators will perform a risk evaluation of their distribution systems and implement appropriate measures to address risk.

Risk Management Measures

- Effective leak management program (LEAKS)
- > Effective excavation damage prevention program
- EFVs on service lines to single family residential customers

Large Capacity EFV Recommendation

EFVs on multi-family, commercial and industrial service lines should be considered by operators as a risk management tool and should not be mandated

Large Capacity EFV Recommendation

Continue the implementation of effective **State** excavation damage prevention programs, including the nine key elements as defined in the Pipeline Inspection, Protection, Enforcement and Safety Act of 2006

