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Executive Summary 
This report documents a study of the potential effects of dents on the integrity of both gas and 
liquids pipelines. The focus of this study was dents located between the 4 o’clock and 8 o’clock 
positions commonly referred to as “bottom-side” dents. However, several aspects of dents in general 
(i.e., issues germane to bottom-side dents as well as other dents) were also reviewed and, for 
completeness, are reported herein. 

The parameter used to determine severity of a dent is usually depth. In fact, depth as a percent of 
diameter is the only dent geometry parameter currently mentioned in 49 CFR 192 and 195 for 
evaluating the disposition of dents (all dents with depths greater than 6 percent of the nominal pipe 
diameter must be repaired or removed). 

However, depth is not always the most useful parameter for determining if a dent presents a threat to 
pipeline integrity. Evaluating the significance of flaws or defects from a fitness-for-purpose 
standpoint, which compares the severity of the flaw against the acceptance criterion for a critical 
state, may be more informative. Where the flaw is characterized as a deformation, the local strain in 
the material may be a relevant criterion for judging its severity. 

A methodology for calculating strain in dents similar to that presented in ASME B31.8-2003 is 
presented in Section 3.2. 

A potentially important phenomenon that should be considered when evaluating the integrity impact 
of a dent is possible pressure-cycle fatigue of the dent. This can occur when a dent is free to flex 
back and forth between various depths in response to fluctuations in the internal pressure of the 
pipeline. This subject is discussed further in Section 3.3. 

A brief review of in-line inspection (ILI) technology with regards to sizing and evaluating dents was 
conducted and is discussed in Section 4. The most common ILI tools for sizing and evaluating dents 
are the latest generation of caliper, or geometry, tools. These tools have multiple mechanical fingers 
that travel along the inside surface of the pipeline and record the deflections of the fingers resulting 
in a “map” of the surface, facilitating examination of deformation magnitude, shape, and location. 
However, since third-party type dents that have undergone rerounding are typically on the order of 
1 percent of the diameter in depth, which is at or below the threshold for reliable detection by many 
caliper tools, these tools may not be the best method for general detection of dents. Other ILI tools, 
such as magnetic-flux leakage (MFL) and ultrasonic (UT) tools commonly used to assess metal-loss, 
are also able to locate dents. Although these tools do not reliably size the depth of dents, they can be 
used to infer the length and width dimensions of some dents. Neither MFL nor UT tools will reliably 
detect metal-loss indications within the curvature of dents with any significant severity, however 
MFL and UT tools have been used successfully by pipeline operators to detect dents with gouges 
and bottom-side dents affected by corrosion. 

Multiple nondestructive examination (NDE) methods are applicable for direct examination of dents 
to assess integrity. These NDE methods include: visual examination, penetrant testing (PT), 
magnetic particle testing (MT), shear wave UT and eddy current testing (ET). 
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Mitigation options discussed in Section 5.3 include: grinding to remove defects in a shallow dent, 
installation of a composite wrap repair, installation of a sleeve, or replacement of the pipeline 
section. 

A recommended procedure for inspection of dents is presented in Section 5 and a review of pertinent 
regulations and industry standards is presented in Section 6. 

Finally, a series of decision diagrams to aid in evaluating dents and determining appropriate 
mitigation, as required, were developed and are presented in Section 7. A number of reference 
documents are also listed at the end of the report. 
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1 Introduction 
This report was developed in accordance with the Statement of Work and proposal submitted in 
response to RFP for Technical Task Order Number 10 (TTO 10) entitled “Bottom-Side Dent Study”. 

Dents in pipelines are a common result of third-party damage or backfill loads over hard spots 
beneath the pipeline. While dents are common, failures from dents alone (i.e., dents without 
additional surficial mechanical damage such as scratches and gouges) are relatively uncommon. 
Dents with additional surficial mechanical damage are typically caused by third-party actions and 
result in immediate failure approximately 80 percent of the time (Rosenfeld, 2001). In the remainder 
of mechanical damage events, damage is not severe enough to cause immediate failure, but if the 
damage is not repaired it may result in failure at a later time if the internal pressure is raised 
sufficiently, if corrosion develops in the damaged material, or due to pressure-cycle fatigue. 
Pressure-cycle fatigue is caused by the dent cyclically rebounding or “rerounding” under internal 
pressure fluctuations (in other words, the indentation flexes in and out in response to variations in 
operating pressure). 

On the other hand, dents without additional surficial mechanical damage or “plain dents” are not an 
immediate threat to pipeline integrity. They can, however, create a longer-term integrity issue due to 
the development of ancillary problems (e.g., coating damage, shielding from cathodic protection, 
corrosion, stress-corrosion cracking (SCC), hydrogen cracking, or punctures due to continued 
settlement). In some cases, plain dents can also fail due to pressure-cycle fatigue. 

Pressure-cycle fatigue failure of dents is most common in “unrestrained” or “unconstrained” dents, 
i.e. those that are not prevented from rerounding under the effects of internal pressure by the soil 
surrounding them. Conversely, dents that are prevented from rerounding, such as dents caused by 
rocks in the ditch, are considered “restrained” or “constrained”. However, in cases where there are 
closely spaced restrained dents, the saddle-shaped area between the dents is actually unrestrained 
and thus may be susceptible to pressure-cycle fatigue failure even if the dents themselves are 
restrained (Rosenfeld, 2002(b)). 

Regardless of the cause of the dent, if any restraining force is removed, such as when a rock dent is 
exposed and the rock removed, the dent is then unrestrained and subjected to possible fatigue 
damage. 

Pressure-cycle fatigue failure of dents is more likely to occur in liquid lines, compared to gas lines, 
due to the more cyclical operating pressure spectrum. 

Numerous publications, many resulting from actual tests or field observations, are available. 
However, a simple damage assessment criterion that accurately portrays failure potential has not 
been developed due to the complex nature of the problem. Nevertheless, much has been learned 
regarding the multitude of factors that are important when considering the appropriate response to 
pipeline dents. 

Since dents with and without associated surficial mechanical damage are fairly common, there is a 
need to address the ability of pipeline operators to detect and evaluate occurrences, including 
bottom-side dents, in the context of integrity management. 
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2 Background 
Office of Pipeline Safety incident records for liquid lines from 1968 through 2003 and gas lines from 
1970 through 2003 were analyzed in an attempt to quantify the number of incidents related to dents 
that have occurred in the United States. This review only identified seven incidents in liquid lines 
(out of 8,721 reported) and two incidents in gas lines (out of 24,150 reported) where specific 
reference to failure at a dent had occurred. There was not sufficient data to determine whether any of 
these were bottom-side dents, or even simply plain dents. However, one of the documents identified 
during a literature search indicated one of the dents on a liquid line was actually a bottom-side dent 
that failed due to corrosion fatigue from an area of near-neutral pH SCC (Johnston, 2002). 

Further review of the incident records identified an additional seven incidents in liquid lines and one 
incident in a gas line where reference was made to damage due to rocks. It is a reasonable 
assumption that the majority of these incidents also had associated dents, and were likely bottom-
side dents. 

Thus, the total number of incidents suspected to be associated with dents based on this review is 14 
out of 8,721 for liquid lines (<0.2%) and three out of 24,150 for gas lines (<<0.1%). 

The one confirmed bottom-side dent failure resulted in an estimated release of 11,644 barrels of 
crude oil and resulted in approximately $12.6 million in damage. The total estimated liquid release 
for all 14 incidents was 17,423 barrels with approximately $14.9 million in damage. 

This analysis is somewhat inconclusive since the incident data available on the OPS FOIA On-line 
Library for both gas and liquids lines does not report failures at dents as a separate category/cause. 
Some of the incidents included in the above summary were identified based on information captured 
in other fields. Consequently, the incidents included in the above summary may not represent all 
failures at dents, however, the summary does seem to reveal that failures from dents are not a 
significant portion of pipeline incidents. 
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3 Dent Characterization and Parameters Affecting Pipeline Integrity 
3.1 Scope Statement 

“Discuss the various mechanisms whereby dents might affect pipeline integrity and evaluate the 
more relevant of the numerous parameters that would be utilized to assess an existing dent. Discuss 
efforts that have been undertaken to predict failure of dents.” 

Assuming that a dent survives the initiating force, failure may occur at a later time due to: 

• damage to the coating, allowing localized corrosion resulting in a stress concentration. 

• mechanical damage to the pipeline itself, resulting in a stress concentration. 

• fatigue due to fluctuations in pressure. 

The ability of an ILI tool to detect metal-loss indications within the curvature of a dent is dependent 
on the sensor suspension system. This is discussed further in Section 4. Pressure-cycle fatigue is 
discussed further below. 

While depth of a dent, its location, and the presence of metal loss are the parameters for assessment 
in 49 CFR 192 and 195, the latest version of ASME B31.8 has introduced the concept of assessing 
dents based on strain. These issues are discussed in the following sections. 

3.2 Discussion on Strain in Dents 

The parameter typically used to determine severity of a dent is depth. In fact, depth as a percent of 
diameter is the only dent geometry parameter currently mentioned in 49 CFR 192 and 195 for 
evaluating the disposition of dents (all dents with depths greater than 6 percent of the nominal pipe 
diameter must be repaired or removed). 

However, depth is not always the most useful parameter for determining if a dent presents a threat to 
pipeline integrity. Evaluating the significance of flaws or defects from a fitness-for-purpose 
standpoint, which compares the severity of the flaw against an acceptance criterion for a critical 
state, can be more informative. Where the flaw is characterized as deformation, the local strain in the 
material may be a relevant criterion for judging its severity. 

3.2.1 ASME B31.8 Strain Criterion 

The latest version of ASME B31.8 (2003) acknowledges this concept and provides strain acceptance 
criterion, as well as a method for estimating the strain in dents. This estimation procedure and 
justification for the strain acceptance criterion are discussed below. 

The strain in a thin plate bent to a radius R, is given by the equation R
t=ε , where t is the thickness 

of the plate. Line pipe is proof tested during the manufacturing process, which redistributes and 
relieves some residual forming stresses. Therefore, this equation must be modified to correctly 
estimate the strain due to denting in a manner that reflects the strain in the pipe wall in the 
circumferential direction as zero if perfectly round. This modified equation takes the form of: 
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

10
1

11
RR

tε  Equation 3.1 

where: 

R0 is the original outside radius of the pipe, 

R1 is the indented radius of the outside surface of the pipe, and 

t is the wall thickness. 

Radii are positive if measured from the direction of the center of the pipe, that is, radius R1 would be 
positive if the denting only results in “flattening” of the pipe. The radius would be negative if, in 
fact, the dent is actually reentrant (i.e., the curvature of the pipe has been reversed). This is shown 
graphically in Figure 3.1. 

 
Figure 3.1 Non-reentrant Versus Reentrant Dents 

The calculation of strain in the longitudinal direction is essentially the same as for a flat plate; 
however, to be consistent with the sign convention defined for the circumferential direction (both 
strain and radii), the formula takes the appearance: 

2
2 R

t
−=ε  Equation 3.2 

where: 

R2 is the radius of curvature of the outside surface of the pipe in a 
longitudinal plane through the dent. Based on the sign convention discussed 
above, this value is generally always a negative number. 
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There is an additional strain to consider in the longitudinal direction, extensional strain, which is the 
strain due to the actual elongation of the material through the dent and is calculated using the 
formula: 

2

3 2
1

⎟
⎠
⎞

⎜
⎝
⎛=

L
dε  Equation 3.3 

where: 

d is the depth of the dent, and 

L is the length of the dent. 

The above formula is an empirical estimate that was benchmarked against a limited number of finite 
element analyses. 

Once these values are calculated, the resultant strains on the inside and outside pipe surfaces are 
computed as: 

( ) ( )2
32321

2
1 εεεεεεε +++−=i  (inside surface) Equation 3.4 

and 

( ) ( )2
32321

2
1 εεεεεεε +−++−+=o  (outside surface) Equation 3.5 

3.2.2 Discussion of ASME Criteria 

The equations given in ASME B31.8, and shown here as equations 3.1 through 3.3, develop the 
component strains in the circumferential and longitudinal directions. The through-thickness strain is 
assumed zero. Equations 3.4 and 3.5 serve the function of reducing the components developed to a 
scalar. Reduction to a scalar allows the criteria to be consistently evaluated and applied to any 
combination of the component strains. 

The methodology is the same as used to develop a scalar stress value for criteria for pipe stress 
evaluation. There are two generally accepted empirical criteria for prediction of yielding of ductile 
metals: maximum-shearing-stress theory (Tresca theory), and the maximum-distortion-energy theory 
(von Mises theory). These are both used in pipeline regulations as well as in pipe stress analytical 
software packages. 
The Effective Stress calculated using the von Mises Theory (sometimes erroneously referred to 
as the “von Mises stress”) is: 

( ) ( ) ( )2
13

2
32

2
212

1 σσσσσσσ −+−+−⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=effective  

For a plane stress state, σ3 = 0, therefore substituting this into the above equation: 

( ) ( ) ( )2
1

2
2

2
21 00

2
1 σσσσσ −+−+−⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=effective  ⇒ ( ) 2

1
2

2
2

212
1 σσσσσ ++−⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=effective  
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Expanding terms: 

2
1

2
2

2
221

2
1 2

2
1 σσσσσσσ +++−⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=effective  

And gathering like terms: 

( )2
221

2
12

2
1 σσσσσ +−⋅⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=effective  ⇒ 2

221
2

1 σσσσσ +−=effective  

The “effective stress” is a uniaxial stress that produces the same octahedral shear stress as the actual 
principal stresses. 

Similarly, Effective Strain, as defined in a description for a course on Plastic Deformation at Large 
Strain, High-Strain Rate, High Temperature given at the University of Minnesota, is: 

( ) ( ) ( )2
13

2
32

2
213

2 eeeeeeeeffective −+−+−⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=  

Where e1, e2, and e3 are the strains in the principal directions. For the pipe problem, we will take the 
circumferential and longitudinal directions as the principal directions. The through-wall strain is 
assumed zero. Thus, for the inside surface: 

e1= ε1 (from Equation 3.1) 

e2 = ε2 + ε3 (from Equations 3.2 and 3.3) 

e3 =0 

Substituting this in the above: 

( )[ ] ( )[ ] ( )2
1

2
32

2
321 00

3
2 εεεεεε −+−+++−⋅⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=effectivee  

Expanding terms: 

( ) ( ) ( ) 2
1

2
32

2
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2
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2
1 2

3
2 εεεεεεεεε ++++++−⋅⎟

⎟
⎠

⎞
⎜
⎜
⎝
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Collecting like terms: 
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2
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2
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3
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This last equation can be seen to be Equation 3.4 preceded by a constant. 

For the outside surface, the same process is used but with:  

e1= -ε1 (from Equation 3.1) 

e2 = -ε2 + ε3 (from Equation 3.2 and 3.3) 

e3 =0 

Thus, Equations 3.4 and 3.5 are analogous to the stress-based von Mises Theory. While the normal 
formulation of the theory is for determining the effective stress in a body subjected to biaxial or 
triaxial loading such as a pipeline, the empirical formulae given by Equations 3.4 and 3.5 are strain 
based. They form the same function of reducing a multiaxial-state to a reference scalar in a 
consistent formulation. 

3.2.3 Example 

The following example shows both the applications of Equations 3.1 through 3.5, as well as 
illustrates that strain is sometimes a better indicator of dent severity than depth alone. The example 
is of a pipeline with a diameter of 20 inches and a wall thickness of 0.312 inches. Results produced 
by application of Equation 3.1 for a series of values for R1 ranging from 10 inches to –2 inches is 
shown in Figure 3.2. Note that the initial value of R1 is equal to the value of R0 in this example, and 
the calculation results in a zero strain value, which is expected based on the premise that line pipe is 
essentially strain relieved subsequent to the manufacturing process. As the shape of the dent 
proceeds from just a slight flattening of the pipe to essentially a flat spot, the radius R1 increases 
from the original outside radius to essentially infinite radius (zero curvature). Once the dent becomes 
reentrant, the radius R1 becomes negative and increases until it approaches zero, such as at a crease, 
and the strain values become very large. If the strain capacity of the material is exceeded, tearing of 
the metal will occur and the pipeline will fail. The concept of change in sign of R1 as the dent goes 
from non-reentrant to reentrant is illustrated in Figure 3.1. A further illustration is provided in Figure 
3.3. While all the dents depicted have the same depth, as the dent becomes, what is intuitively, more 
severe, the curvatures increase and the absolute value of the radii decrease. Increased strains would 
be associated with the more acute dent forms. 
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Figure 3.2 Results from Equation 3.1 for Various Values of R1 

 
Figure 3.3 Example Dent Profiles 

Strain calculations were completed for a 1.3-inch-deep reentrant dent, as shown on the right side of 
Figure 3.1, for each case of longitudinal length and curvatures depicted in Figure 3.3. The basic 
parameters for input into the various strain equations are given in Table 3.1. Calculation results for 
Equations 3.1 through 3.5 are presented in Table 3.2. 

Table 3.1 Dent Parameters 
Parameter Case 1 Case 2 Case 3 
Depth, d (inches) 1.3 1.3 1.3 
Length, L (inches) 12 10.5 9 
Pipe radius, R0 (inches) 10 10 10 
Dent radius, R1 (inches) -20 -20 -20 
Dent radius, R2 (inches) -14 -10.6 -7 
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Table 3.2 Strain Calculation Results 
Case 1 Case 2 Case 3 Equation 

in/in % in/in % in/in % 
3.1 0.0468 4.68% 0.0468 4.68% 0.0468 4.68% 
3.2 0.0223 2.23% 0.0294 2.94% 0.0446 4.46% 
3.3 0.0059 0.59% 0.0077 0.77% 0.0104 1.04% 
3.4 0.0546 5.46% 0.0596 5.96% 0.0721 7.21% 
3.5 0.0495 4.95% 0.0515 5.15% 0.0577 5.77% 

Once strains have been calculated, they must be compared to a strain criterion. The latest version of 
ASME B31.8 establishes the allowable strain in dents at 6 percent. This value is based, in part, on 
the fact that both ASME B31.4 and B31.8 allow up to approximately 3 percent strain to be induced 
in the pipe wall during field bending (calculated as the change in pipe length along the intrados or 
extrados of the bend divided by the original unbent length, or D/2R where R is the average radius of 
the bend at the neutral axis, see Table 3.3). In addition, it has been observed that the likelihood of 
cracks in deformation seems to increase where material strain exceeds approximately 12 percent 
(Rosenfeld, 2001). Therefore, 6 percent was chosen as an appropriate strain criterion. 

Table 3.3 Allowable Strains in Field Bends 

Diameter 
(in) 

Deflection of 
Longitudinal Axis 

(deg) 

Minimum 
Bend 

Radius 

Radius at 
Neutral Axis 

(in) 

Arc Length of 
Neutral Axis 

(in) 

Radius at 
Extrados (in)

Arc Length of 
Extrados (in) 

Resulting Strain
(percent) 

12.75 3.2 18D 229.5 12.82 235.875 13.17 2.8% 
14 2.7 21D 294 13.85 301 14.18 2.4% 
16 2.4 24D 384 16.08 392 16.42 2.1% 
18 2.1 27D 486 17.81 495 18.14 1.9% 
20 1.9 30D 600 19.90 610 20.23 1.7% 

Review of the calculation results for Equations 3.4 and 3.5 show that even though the depth of the 
dent exceeds six percent of the outside diameter of the pipe (0.06 × 20 = 1.2 inches) for this 
example, the strain may or may not exceed the 6 percent criteria, depending upon the actual 
measured radius of curvature of the pipe wall. The results are consistent with what normal judgment 
would indicate, that is, a dent relatively deep for its length is worse in terms of the strains associated 
with deformation than one with the same depth spread out over a greater length and width of pipe 
surface. 

3.3 Pressure-Cycle Fatigue 

As discussed in Section 1, a restrained dent is one that is constrained by some physical means and 
cannot rebound to its original contour. Unrestrained dents, such as those caused by a blunt impact, 
will normally rebound nearly completely due to the internal pressure of the pipeline once the 
impacting force is removed. 

The main concern with unrestrained plain dents is pressure-cycle fatigue. This is a result of high 
local bending stresses associated with the dent fluctuating with operating pressure cycles (i.e., as the 
internal pressure increases, the dent tends to flatten, which is also known as rerounding, and as the 
pressure decreases, the dent tries to resume its initial geometry. Much research has been completed 
on demonstrating or predicting the pressure-fatigue characteristics of dents (Rosenfeld, 2001). 
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The fatigue performance of dents is affected by several factors. For unrestrained dents, fatigue life 
has been shown in analytical models to: 

• decrease with increasing initial depth (Alexander, 1997), 

• decrease with increasing pressure cycle range (Alexander, 1997), 

• increase with mean pressure level, 

• decrease with increasing initial local strain (Kiefner, 1999), 

• decrease with increasing dent width-to-depth ratio (Rosenfeld, 1997), 

• decrease with increasing pipe D/t ratio (Fowler, 1993), and 

• decrease with increasing SMYS (Fowler, 1993). 

This last effect is due to the dent in low-SMYS material being more likely to reround plastically to a 
shallower residual depth than would a similar dent in a high-SMYS material of the same thickness, 
and thus undergo smaller elastic fluctuations from pressure cycles, leading to a longer life compared 
to the deeper residual depth (Rosenfeld, 2001)1. 

Tests have shown that plain dents having residual depths of 2 percent or less of the pipe diameter 
exhibited fatigue lives between 105 and 106 cycles of pressure producing hoop stress levels between 
36 and 72 percent of SMYS (Rosenfeld, 2001). Due to the low number of pressure cycles typically 
experienced by gas pipelines, this is likely equivalent to an indefinite life for most gas pipelines 
(regardless, this does not alleviate the need for gas operators to address the requirements of 49 CFR 
192.917 (e)(2)). However, as some liquid pipelines operate with pressure spectra several orders of 
magnitude more aggressive than most gas pipelines, pressure-cycle fatigue of dents is a valid 
concern. 

Given the same size and shape, restrained dents typically have at least an order of magnitude greater 
fatigue life than unrestrained dents. In one series of tests, restrained dents up to 18 percent of the 
pipeline diameter survived hundreds of thousands of pressure cycles between 36 and 72 percent of 
SMYS without failure (Alexander, 1997). In additional studies conducted by the Texas 
Transportation Institute in cooperation with OPS, the fatigue lives of restrained versus unrestrained 
dents were compared as part of a larger project evaluating the fatigue behavior of dents (Texas 
Transportation Institute 1997). A comparison of the fatigue lives of restrained versus unrestrained 
dents determined in the Texas study is presented in Figure 3.4. Based on these results, there is 
justification for not excavating rock dents, at least on pipelines that are susceptible to pressure cycle 
fatigue, even though not excavating them will necessitate addressing long-term corrosion control and 
monitoring issues mentioned in Section 1. 

                                                 
1 This notion is based on theoretical considerations that may be outweighed by other important advantages associated 
with higher-strength pipe, such as improved toughness. It is not intended to suggest that low-strength pipe is categorically 
superior to high-strength pipe in resisting mechanical damage. 
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Figure 3.4 Comparison of Fatigue Lives for Restrained versus Unrestrained Dents 

An important exception(also mentioned in Section 1) is if there are two closely spaced (less than or 
equal to one pipe diameter) restrained dents with a flattened or saddle-shaped area between them. 
The flattened area between the dent centers may be susceptible to pressure-cycle fatigue since it can 
be effectively unrestrained and thus flexes in response to pressure cycles. In this situation, further 
investigation is warranted.   If this is confirmed in the field, the best response would be to install a 
full-encirclement sleeve around the feature. The concern for this condition is much greater for liquid 
pipelines due to their more severe pressure-cycling characteristics. However, one failure in a gas 
pipeline in 2002 is thought to have been caused by SCC in the saddle area between two dents. 

The study of pressure cycle fatigue is a topic of ongoing work effort. 

3.4 Dents on Welds 

Tests conducted by Battelle and British Gas indicate that burst strength could be adversely affected 
by dents on seams of low-frequency electric-resistance welded (LF-ERW) line pipe and double 
submerged arc-welded (DSAW) line pipe, and that fatigue life is also adversely affected (Rosenfeld, 
2001). Later testing indicates that fatigue life for dents in seams of high-frequency electric-resistance 
welded (HF-ERW) line pipe is nearly as good as in the body of the pipe (Alexander, 1997). 

Additional testing demonstrated that dents affecting girth welds, ERW seams, and DSAW seams all 
have similar fatigue performance; as a group they tend to fail in about a half-order of magnitude 
fewer cycles as compared to plain dents in the body of the pipe (Kiefner, 1999). 
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These results are for pipelines having sound, ductile welds, and therefore are not representative of 
LF-ERW, electric-flash welded, lap-welded or other seam types that may be susceptible to brittle 
fracture. Girth welds were assumed to meet the minimum requirements of API Std 1104, or at least 
be generally sound electric welds. No tests of dents on oxy-acetylene welds have been described in 
the literature. 

For the reasons discussed above, the recommended strain limits are reduced in welds. ASME B31.8 
recommends an upper limit on strain of 4% for dents affecting ductile welds. ASME B31.8 further 
indicates that dents affecting non-ductile welds (e.g., oxy-acetylene welds) are not allowed and must 
be repaired. 

3.5 Prediction of Failure at a Dent 

In the US, extensive research has focused on issues related to remaining strength and service life of 
damaged pipelines. The goal of this work has been to develop inspection, maintenance, and 
monitoring criteria. On the other hand, the majority of research conducted in Europe has focused on 
the parameters of ultimate damage resistance (e.g., the force required to puncture the pipe) with the 
main goal of developing damage-resistance criteria for design of new pipelines, or for specifying 
size limits on equipment operating near pipelines. 

In excess of four hundred tests related to dents, gouges, puncture, rerounding, burst, and fatigue have 
been performed on pipe samples with various diameters, wall thicknesses, and materials. However, 
even with this amount of information, clear understanding of the underlying damage mechanisms 
and development of accurate predictive models has not been completely achieved. 

A number of studies on plain dents using finite element analysis (FEA) have been conducted. The 
main issue with FEA is that the model must account for both material and geometric nonlinearities. 
Accurate modeling of material nonlinearities hinges on the stress-strain relationship of the material, 
which is most certainly altered by the denting and rerounding process. Another issue is the difficulty 
in establishing a suitable failure criterion for use in evaluating the FEA results. 

Nevertheless, these tests and studies provide a basis to support empirical guidelines that can be used 
by operators until better understanding of the dent behavior is available. A list of references and 
other pertinent documents is given in Section 8. 
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4 ILI Technology for Sizing and Evaluating Dents 
4.1 Scope Statement 

“Evaluate the reliability of current ILI technology for locating and characterizing dents. Discuss 
potential benefits of comparing subsequent ILI tool runs, and evaluate the potential benefits of 
comparing data from different types of ILI tools.” 

4.2 Using MFL Tool Data to Evaluate Deformations 

MFL tools have been run in pipelines for the last thirty years to reliably detect metal loss anomalies. 
Although the primary purpose of these tools is to detect and quantify metal loss, they also respond to 
deformation anomalies and may be used to locate the deformations and to assess their 
characteristics. MFL tools do not directly measure the reduction in pipe diameter due to the 
deformation, but do respond to any sharp portions of the deformation by the sensors “lifting off” the 
inside pipe surface. This creates a magnetic field change, thus causing a signal response. The 
sensitivity to deformation detection is somewhat based on the type of sensor assembly, the size of 
the sensors, and the type of sensors. MFL tools may not produce a signal response due to 
deformations that are almost all ovality or pipe that is gradually egged with no sharp contour 
changes. Deformations that are composed of only ovality are rarely integrity concerns. Deformations 
with sharp contour changes (those that may contain potential integrity issues) can be reliably 
detected by an MFL tool. The proper analysis of the MFL raw data is the key to gaining information 
about the deformation anomalies. The longitudinal length may be determined by measuring the 
length of pipe where there was sensor disturbance. The circumferential width may be determined by 
the number of channels or sensors affected. In many cases, there is a relationship between the depth 
of a symmetrical deformation and the circumferential width. 

Deformations that cause significant sensor disturbance should be further assessed. The assessment 
may consist of further MFL data scrutiny to determine the area affected and whether there are any 
indications of metal loss within or adjacent to the deformation. Deformations that are sharp or that 
have more than one peak will cause a significant sensor disturbance on the MFL data. Deformations 
with more than one peak have been found to be susceptible to cracking on some pipeline systems. 

Metal loss creates a different change in the magnetic flux field and thus different signals than 
deformation “lift off.” Deformations that contain metal loss may be distinguished due to their 
combined (metal loss and deformation lift-off) signals from deformations that do not contain metal 
loss (these will only have lift-off signals). Deformations that have a small radius of curvature and 
thus a steep slope may cause significant lift-off of the MFL sensors such that the ability to detect 
metal loss is reduced or overcome. Deformation with a small radius of curvature would cause a 
significant signal response, and therefore, should be recommended for evaluation or correlation with 
a geometry tool inspection. 

If the tool vendors are expected to identify deformation with a small radius of curvature, the MFL 
ILI specifications should specify that the ILI vendor report deformations with significant signal 
response and deformations with metal loss during the MFL analysis. The analysis of deformations 
should be reviewed by the operator’s integrity management staff to verify that the ILI vendor 
properly interpreted deformation anomalies. 
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4.3 Using UT Tool Data to Evaluate Deformations 

The detection and extent of deformation anomalies may be obtained by careful analysis of the 
signals recorded by UT tools. The circumferential and longitudinal extent of deformation anomalies 
may be obtained. As a UT transducer passes over a deformation, any sharp contour changes will 
cause a change in the UT transducer angle such that the sound waves do not return to the transducer 
and a loss of signal is recorded. The loss of signal patterns can be interpreted to provide information 
about the characteristic's deformation anomalies. Deformations that do not contain a small radius of 
curvature or steep slopes may only cause an increase in the stand-off distance (the distance from the 
ultrasonic transducer and the inside pipe surface). Ultrasonic data may be used to approximate the 
magnitude of deformation anomalies based on the arc-degrees circumferentially affected on the pipe 
that cause a loss of signal. Physical measurements obtained from sample excavations are correlated 
with the ultrasonic data to validate the process. 

The ultrasonic data may be correlated with a multi-channel deformation tool to demonstrate that the 
process is valid and that the predicted deformation magnitudes and patterns were consistent. One 
drawback to the use of ultrasonic wall measurement tools for deformation analysis is that on those 
deformations that cause a loss of signal, wall thickness measurements are not recorded for the 
portion of the deformation where the transducers experienced loss of signal. On those deformations 
where an increase in the stand-off distance is experienced, wall thickness measurements will still be 
recorded, and an analysis for metal loss may be obtained. 

4.4 Using Geometry Tools to Evaluate Deformations 

Multiple geometry tool configurations are available from ILI vendors that can provide various levels 
of detail. They can generally be grouped into two categories: single-channel tools and multi-channel 
tools. Modern geometry tools are reliable for locating and characterizing deformation anomalies. A 
multi-channel geometry tool is recommended for detailed analysis. A metal-loss tool or direct 
examination is required to determine if metal loss is associated with the deformation anomaly. 

Single-channel tools that only give distance traveled and the minimum pipeline diameter are useful 
on new construction projects or on line segments that have never been pigged. These tools offer 
simple operation, low inspection cost, the ability to pass large reductions, and rapid analysis of the 
geometrical data. The drawbacks to the use of these tools are numerous. They offer limited 
information, no orientation of the deformation on the pipeline, no way to discern the circumferential 
extent of the deformation, and reduced ability to perform strain or stress calculations from the 
results. 

Multi-channel tools provide additional data such as orientation, width of the deformation, and the 
ability to make longitudinal and circumferential strain calculations based on the rate of change in 
each geometry sensor. Design and spacing of the sensing fingers or paddles determines the 
circumferential resolution of a caliper tool. Conventional resolution calipers were typically designed 
with the same number of fingers as the nominal pipe size (NPS), such as 12 fingers or 20 fingers for 
NPS 12 or 20 pipelines, respectively. The spacing between the sensing fingers is approximately pi or 
3.14 inches when the number of sensors equals the NPS. Later, higher resolution caliper tools were 
designed with spacing as small as approximately ¾ inch. Caliper tools have been designed with 
narrow (rod-like) fingers or paddles, with a tip contour matching the inside surface. Radius-tipped 
paddles provide more coverage of the inside surface than narrow fingers, but the radius tips tend to 



Michael Baker Jr., Inc. OPS TTO10 – Dent Study 

 Page 19 TTO 10 Final Report 

average the width of the deformation. Conversely, narrow fingers may provide greater resolution of 
the contour, but do not record deformation that passes between adjacent fingers.  

Linear resolution of deformation contour is related to the sampling rate. Sampling rate may be 
determined by lapsed time or travel distance. When the sampling rate is determined by lapsed time, 
the resolution can be affected by variations in velocity as the tool traverses the pipeline. When the 
sampling rate is determined by travel distance (as determined by the odometer), rapid acceleration or 
deceleration can cause odometer slippage and introduce errors in resolutions. Linear sampling at 
intervals of 0.25 inch and less can be characterized as high linear resolution, while sampling at 
intervals of 1 inch and greater can be characterized as low linear resolution. 

Deformation anomalies are normally made up of a sharp portion that is normally referred to as the 
dent and an egged portion on the periphery of the dent that is normally referred to as ovality. In 
some cases, the pipeline may not contain a dent and the reduction in pipe diameter is attributable 
solely to ovality. Ovaled pipe normally is not an integrity concern as long as the diameter reduction 
will not affect the operation of the pipeline or the running of ILI tools. 

4.5 Potential Benefits of Comparing Data from Different Types of ILI Tools 

Metal-loss tools may be used to determine the existence of deformation anomalies (particularly those 
that are prone to integrity issues). The metal-loss tools will provide the approximate size of the 
deformation.  The approximate seriousness of the deformation can be inferred by the extent that the 
metal-loss tool reacts while traveling over the deformation. To conservatively use a metal-loss tool 
as the sole deformation inspection tool may result in the excavation of deformations that would not 
otherwise require excavation. Additional information such as deformation depths and the ability to 
calculate strains may be obtained by running a geometry tool. None of the available geometry tools 
can identify external metal loss. Consequently, determining if metal loss is present requires 
excavation for direct examination or running a metal loss tool. A potential benefit of combining a 
metal-loss tool with a geometry survey may be the ability to cost effectively screen deformations 
based on magnitude, strain, and metal- oss. The correlation of the metal-loss tool with the geometry 
tool could lead to improved selection of deformation for excavation and potentially fewer 
deformations that require remediation. 

4.6 Potential Benefits of Comparing Subsequent ILI Tool Runs 

One potential benefit of comparing subsequent tool runs is that changes in deformation magnitudes 
or profiles may be discovered and deformations may be evaluated to determine if they have suffered 
metal loss since the previous inspection. Another potential benefit would be to detect deformation 
anomalies that were not present on the previous inspection and therefore have developed since the 
previous inspection. A comparison of the tool data is recommended to fully compare tool runs, as 
opposed to simply a comparison of report spreadsheets, in case anomalies are inadvertently missed 
on one of the inspections. 
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5 Field Inspection and Mitigation 
5.1 Scope Statement 

“Evaluate the various methods for inspection and mitigation of dents. Develop a recommended 
procedure for inspection of dents for the purpose of determining whether mitigation is required.” 

5.2 Inspection Methods 

There are several techniques for performing NDE of pipelines. The following sections discuss the 
NDE methods most applicable for inspection of dents. 

5.2.1 Visual Examination 

Visual inspection is the oldest and most common form of NDE. Visual inspection is a quick and 
economical method for detecting and sizing flaws that are visible on the pipeline’s exterior surface.  
The reliability of visual inspection depends upon the training and experience of the inspector, as well 
as the inspection protocol and acceptance criteria. The inspector must be trained to identify critical 
flaws and compare them with the acceptance criteria. 

The main disadvantage of visual inspection is that the surface to be inspected must be relatively 
clean and accessible to the unaided eye. Surface preparation can range from wiping with a cloth to 
blast cleaning and treating with chemicals to reveal the surface condition. Typically, visual 
inspection lacks the sensitivity of other surface NDE methods. 

5.2.2 Penetrant Testing 

Penetrant testing (PT) is one of the most widely used NDE methods and is used to reveal surface 
breaking flaws by bleedout of a colored or fluorescent dye from flaws. Widespread use of PT can be 
attributed to two main factors, which are its relative ease of use and its flexibility. 

The technique is based on the ability of a liquid to be drawn into a "clean" surface breaking flaw by 
capillary action. After a period of time, called the "dwell," excess surface penetrant is removed and a 
developer applied. The developer acts as a "blotter" to draw the penetrant from the flaw to reveal its 
presence. Colored (contrasting) penetrants require illumination with adequate white light, while 
fluorescent penetrants must be used in darkened conditions and illuminated with an ultraviolet 
"black light." 

It is essential that the component is carefully cleaned first, otherwise the penetrant will not be drawn 
into the defect. If surface penetrant is not fully removed before application of the developer, 
misleading indications will result. 

PT is used to inspect for flaws that break the surface of the material being examined such as fatigue 
cracks that may develop within a dent. It is capable of detecting surface breaking flaws that would 
not be observed  by the unaided eye. 

Like all NDE methods, PT has both advantages and disadvantages. The primary advantages and 
disadvantages when compared to other NDE methods for inspection of dents are summarized below. 
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Primary Advantages 

• The method has high sensitivity to small surface discontinuities. 

• Large areas can be inspected rapidly and at low cost. 

• Indications are produced directly on the surface of the pipe and constitute a visual 
representation of the flaw. 

• Aerosol spray cans make penetrant materials very portable. 

• Penetrant materials and associated equipment are relatively inexpensive. 

Primary Disadvantages 

• Precleaning is critical as contaminants on the surface can mask defects. 

• Metal smearing from machining, grinding and grit or vapor blasting must be removed prior 
to PT. 

• The inspector must have direct access to the surface being inspected. 

• Surface finish and roughness can affect inspection sensitivity. 

• Multiple process operations must be performed and controlled. 

• Post cleaning of acceptable parts or materials is required. 

• Chemical handling and proper disposal is required 

5.2.3 Magnetic Particle Testing 

Magnetic particle testing (MT) is an NDE method primarily used to detect surface breaking flaws. 
MT can also be used to locate near sub-surface flaws that are essentially perpendicular to the 
surface; however, its effectiveness quickly diminishes as the depth of a defect increases or size 
decreases. 

MT uses magnetic fields and small magnetic particles, such as iron filings to detect flaws in 
components. The magnetic particles can be applied dry or wet; suspended in a liquid, colored, or be 
made fluorescent for visual contrast against a background. The technique uses the principle that 
magnetic lines of force (flux) will be distorted by the presence of a flaw in a manner that will reveal 
its presence. The flaw (for example, a crack) is located from the "flux leakage" following the 
application of fine iron particles to the area under examination. There are variations in the way the 
magnetic field is applied, but they are all dependant on the above principle. 

Surface irregularities and scratches can give misleading indications. Therefore, it is necessary to 
ensure careful preparation of the surface before MT is undertaken. 

5.2.4 Ultrasonic Shear Wave Testing 

UT uses sound waves of short wavelength and high frequency to detect flaws or measure material 
thickness. Usually, pulsed beams of high frequency ultrasound are used via a handheld transducer 
(probe) which is placed on the specimen. Any sound from the pulse that is reflected and returns to 
the transducer (like an echo) is shown on a screen, which gives the amplitude of the pulse and the 
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time required to return to the transducer. Flaws anywhere through the specimen thickness may 
reflect sound back to the transducer if orientation is suitable. Flaw size, distance, and reflectivity can 
be interpreted by a technician having appropriate training and experience. 

5.2.5 Eddy-Current Testing 

Eddy-current testing is an electromagnetic technique and can be used for crack detection. When an 
energized coil is brought near to the surface of a metal component, eddy currents are induced into 
the specimen. These currents set up a magnetic field that tends to oppose the original magnetic field. 
The impedance of the coil in close proximity to the specimen is affected by the presence of the 
induced eddy currents in the specimen. 

When the eddy currents in the specimen are distorted by the presence of the flaws, the impedance in 
the coil is altered. This change is measured and displayed in a manner that indicates the type of flaw. 

5.3 Remediation Techniques 

Depending on the severity and condition of a dent, several remediation options are available: 
grinding of defects in shallow dents, installation of composite wrap repairs, installation of a welded 
steel sleeve, or replacement of the pipeline section. It is common practice to reduce the pressure to 
no more than 80 percent of the recent high operating pressure level prior to initiating repairs, 
especially where there is significant uncertainty as to the nature and severity of the defect. Such a 
reduction maintains the minimum margin of safety implied in the basis for design and operation with 
a minimum hydrostatic test pressure of 90 percent SMYS and operation at 72 percent SMYS. 
Pressure reductions of other magnitudes, either above or below this level, may be justified 
depending on the nature of the defect (e.g., it is normally possible to have a fairly good idea of the 
severity of corrosion, and thus one can determine the most prudent reduction). 

5.3.1 Grinding 

Grinding mechanical damage in shallow dents to a smooth contour was determined to be a feasible 
method to restore the integrity of a pipeline in research published by the Pipeline Research Council 
International (PRCI) and the Gas Research Institute (GRI). Bottom-side dents rarely involve 
mechanical damage, although occasionally it is seen in conjunction with contact from either a very 
sharp and hard rock, or from some type of construction equipment capable of penetrating beneath the 
pipeline. 

Grinding is used as a repair technique for removing mechanical damage, including cracks and SCC, 
in the pipe body. It has been shown that corrosion in a dent does not behave any “worse” than 
corrosion in the pipe body. Therefore, it would be reasonable to perform light grinding to a smooth 
contour to convert mechanical damage or SCC in a rock dent to “metal loss,” provided the resulting 
metal loss is not greater than would be allowed for corrosion. In fact, ASME B31.8-2003 states: 

“External mechanical damage including cracks, may be repaired by grinding ou the 
damage provided any associated indentation of the pipe does not exceed a depth of 
4% of the nominal pipe diameter. Grinding is permitted to a depth of 10% of the 
nominal pipe wall with no limit on length. Grinding is permitted to a depth greater 
than 10% up to a maximum of 40% of the pipe wall, with metal removal confined to 
a length given by the following formula: 
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where 

D = nominal outside diameter of the pipe, in. 

L = maximum allowable longitudinal extent of the ground area, in. 

a = measured maximum depth of ground area, in. 

t = nominal wall thickness of pipe, in.” 

ASME B31.8-2003 also states: 

“Dents containing stress corrosion cracking may be repaired by grinding out the 
cracks to a length and depth permitted in para. 862.213 for corrosion in plain pipe.” 

This would have to be followed by appropriate coating repairs. Grinding might not be recommended 
as a means of mitigating a fatigue crack or partial puncture crack discovered in a bottom-side dent. 
This is because there is potential for the crack to be fairly deep with respect to the pipe wall, and 
continued operation could cause a fatigue crack to reinitiate. The acceptability of grinding as the 
primary means of mitigation is contingent on verification that the remaining thickness of pipe wall is 
adequate per B31.8, B31G or other approved criteria. 

5.3.2 Composite Wrap Repairs 

Composite wrap repairs have been shown to extend the lives of pipes affected by damage when 
compared to damage with no repairs, when correctly installed in the appropriate situations. This type 
of repair may be appropriate for reinforcing a dented pipeline once a mechanical defect has been 
fully removed by grinding. It may also be used for dents with corrosion flaws since the failure 
mechanism in this case is bulging of the thinned area and therefore only reinforcement is required. In 
general, hardenable filler materials must be used in gaps between the pipe surface and the composite 
wrap in order to immobilize the defect. A material such as fast-curing polyester epoxy resin is 
suitable and commonly used for this purpose, but other filler materials have also been used. If the 
possibility for pressure-cycle fatigue is suspected, the use of composite wrap repairs would not be 
appropriate as a permanent repair, as experiments have shown that progressive changes in dents 
continue beneath the wraps when subjected to additional pressure cycles. 

5.3.3 Pipeline Sleeves 

The use of full-encirclement steel reinforcing sleeves with ends left unwelded (Type A sleeves) 
could also be appropriate for any dent-related condition that is not already leaking and a crack or 
possible crack is not left in place. As with the composite wrap repair, the use of a hardenable filler in 
any gaps between the pipeline and the sleeve is necessary. 

A full-encirclement steel containment sleeve with ends welded to the pipeline (Type B sleeve) could 
be appropriate for virtually all dent-related defects. It is unnecessary to use a hardenable filler since 
the sleeve will contain any leak resulting from continued flaw extension in service, but the filler 
would make for a better repair and would probably prevent flaw extension altogether. 
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A pipeline affected by large bottom-side dents may be too distorted for a conventional steel sleeve to 
be installed with a tight fit, which could impair the sleeve’s effectiveness. The same is true with 
repairing buckles. Commercially-made sleeves having an expanded center section are available for 
encapsulating leaking couplings or other devices, and might be usable over a distorted pipeline 
section. The annular space could be filled with grout, or left open, provided the ends of the sleeve 
are welded to the pipeline. 

Another style of sleeve that can be used in such situations is the grout-filled shell. The oversized 
shell is installed with jack screws so as to clear the deformed pipe section. The open annular ends 
are dammed with a moldable epoxy putty, and the full interior space between the shell and pipe 
filled by pumping in a flowable grout. The type of grout depends on the application, but for 
reinforcing dents the main performance characteristic is that the grout have some compressive 
strength so it could be epoxy-based or cement-based. If the pipeline coating is generally well-
adhered, it may be unnecessary to fully remove the original coating within the sleeved length of pipe 
except to the extent necessary to inspect the dent and halt any corrosion that may have occurred. The 
end treatment can be molded and finished to produce a suitable taper for application of an exterior 
coating over both the sleeve and the adjacent pipe surface. Such repairs have been shown to be 
capable of reliably containing line pressure when suitably engineered. 

5.3.4 Pipe Replacement 

Complete replacement of the damaged pipeline section is an option. 

5.4 Recommended Inspection Procedure 

5.4.1 Preliminary Examination and Measurements 

1. Reduce internal pressure to 80 percent of the operating pressure at the time the dent was 
discovered. 

2. Expose the pipeline section to be examined. 

3. Manually clean the pipeline to remove all dirt and loose material on the dented section and a 
minimum of two pipe diameters on either side of the dent. 

4. Visually examine the dented area for evidence of corrosion, gouges, cracking, or coating 
damage. If found, make detailed notes documenting the size, shape, and locations of the 
defects for comparison after coating removal. 

5. Photograph the dent from at least two angles. 

6. Record detailed measurements of the dented area, including: 

a. Total axial length 

b. Depth (difference between the original, undeformed pipe surface and the 
indented surface) at the apparent apex of the dent. 

c. Width (perpendicular to the pipe axis) as the distance separating points of either 
side of the apex of the dent having depths equal to one half of the maximum 
depth. 
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d. Maximum radius of curvature in both the longitudinal and circumferential 
directions (this can be easily measured utilizing a contour gage). 

e. Minimum and maximum “diameters” of the deformed pipe at a maximum of 4-
inch increments along the pipeline axis. 

f. Deviations of the pipeline from straight. 

g. Record locations of girth and/or longitudinal seams in relationship to the dent 
apex, to the extent possible. 

5.4.2 Remove Coating 

1. Remove coating from the deformed area and a sufficient distance on either side to perform a 
complete examination of the dent. 

2. Clean the exposed pipeline surface to near white condition per SSPC SP-10 in accordance 
with operator’s procedures. 

5.4.3 Detailed Examination 

1. Visually examine the entire deformed area following coating removal for any evidence of a 
gouge, groove, crack, arc burn, or other stress-concentrating defect. 

2. Ultrasonically examine the dent for any loss of wall thickness or evidence of crack or other 
discontinuity. 

3. Perform MT or PT of the deformed area. 

4. Perform shear wave UT examination of the dented area if defects are noted. If a crack 
indication is discovered by UT examination, verify with radiographic examination. 

5. If desired, dent contours can be transferred to spreadsheets or physical curvature templates 
for estimating strain levels. 
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6 Pertinent Regulations, Industry Standards and Industry Recommended 
Practices 

The following regulations and industry standards were reviewed for this report: 

• 49 CFR 192 Transportation of Natural and Other Gas by Pipeline: Minimum Federal Safety 
Standards 

• 49 CFR 195 Transportation of Hazardous Liquids by Pipeline 
• ASME B31.4-1998 Pipeline Transportation Systems for Liquid Hydrocarbons and Other 

Liquids (1998) 
• ASME B31.4-2002 Pipeline Transportation Systems for Liquid Hydrocarbons and Other 

Liquids (2002) 
• ASME B31.8-1995 Gas Transmission and Distribution Piping Systems (1995) 
• ASME B31.8-2003 Gas Transmission and Distribution Piping Systems (2003) 
• API Publication 1156 Effects of Smooth and Rock Dents on Liquid Petroleum Pipelines 

(1997) 
• API Standard 1160 Managing System Integrity for Hazardous Liquids Pipelines (2001) 

6.1 49 CFR 192 

49 CFR 192 Subpart O, Pipeline Integrity Management, requires operators to take prompt action to 
address anomalous conditions discovered through integrity assessment as described in §192.933, 
which states in part: 

“(d) Special requirements for scheduling remediation.—(1) Immediate repair 
conditions. An operator's evaluation and remediation schedule must follow 
ASME/ANSI B31.8S, section 7 in providing for immediate repair conditions. To 
maintain safety, an operator must temporarily reduce operating pressure in 
accordance with paragraph (a) of this section or shut down the pipeline until the 
operator completes the repair of these conditions. An operator must treat the 
following conditions as immediate repair conditions: 

(i) A calculation of the remaining strength of the pipe shows a predicted 
failure pressure less than or equal to 1.1 times the maximum allowable 
operating pressure at the location of the anomaly. Suitable remaining strength 
calculation methods include, ASME/ANSI B31G; RSTRENG; or an 
alternative equivalent method of remaining strength calculation. These 
documents are incorporated by reference and available at the addresses listed 
in appendix A to part 192. 

(ii) A dent that has any indication of metal loss, cracking or a stress riser.  

(iii) An indication or anomaly that in the judgment of the person designated 
by the operator to evaluate the assessment results requires immediate action. 

(2) One-year conditions. Except for conditions listed in paragraph (d)(1) and (d)(3) 
of this section, an operator must remediate any of the following within one year of 
discovery of the condition: 
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(i) A smooth dent located between the 8 o'clock and 4 o'clock positions 
(upper 2/3 of the pipe) with a depth greater than 6% of the pipeline diameter 
(greater than 0.50 inches in depth for a pipeline diameter less than Nominal 
Pipe Size (NPS) 12). 

(ii) A dent with a depth greater than 2% of the pipeline's diameter (0.250 
inches in depth for a pipeline diameter less than NPS 12) that affects pipe 
curvature at a girth weld or at a longitudinal seam weld. 

(3) Monitored conditions. An operator does not have to schedule the following 
conditions for remediation, but must record and monitor the conditions during 
subsequent risk assessments and integrity assessments for any change that may 
require remediation: 

(i) A dent with a depth greater than 6% of the pipeline diameter (greater than 
0.50 inches in depth for a pipeline diameter less than NPS 12) located 
between the 4 o'clock position and the 8 o'clock position (bottom 1/3 of the 
pipe). 

(ii) A dent located between the 8 o'clock and 4 o'clock positions (upper 2/3 of 
the pipe) with a depth greater than 6% of the pipeline diameter (greater than 
0.50 inches in depth for a pipeline diameter less than Nominal Pipe Size 
(NPS) 12), and engineering analyses of the dent demonstrate critical strain 
levels are not exceeded. 

(iii) A dent with a depth greater than 2% of the pipeline's diameter (0.250 
inches in depth for a pipeline diameter less than NPS 12) that affects pipe 
curvature at a girth weld or a longitudinal seam weld, and engineering 
analyses of the dent and girth or seam weld demonstrate critical strain levels 
are not exceeded. These analyses must consider weld properties.” 

6.2 49 CFR 195 

Integrity management is discussed in 49 CFR 195.452 and describes actions that an operator must 
take to address integrity issues in subpart (h), which states in part: 

“(4) Special requirements for scheduling remediation. 

(i) Immediate repair conditions. An operator's evaluation and remediation schedule 
must provide for immediate repair conditions. To maintain safety, an operator must 
temporarily reduce operating pressure or shut down the pipeline until the operator 
completes the repair of these conditions. An operator must calculate the temporary 
reduction in operating pressure using the formula in section 451.7 of ASME/ANSI 
B31.4 (incorporated by reference, see § 195.3). An operator must treat the following 
conditions as immediate repair conditions: 

(A) Metal loss greater than 80% of nominal wall regardless of dimensions. 

(B) A calculation of the remaining strength of the pipe shows a predicted 
burst pressure less than the established maximum operating pressure at the 
location of the anomaly. Suitable remaining strength calculation methods 
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include, but are not limited to, ASME/ANSI B31G ("Manual for Determining 
the Remaining Strength of Corroded Pipelines" (1991) or AGA Pipeline 
Research Committee Project PR-3-805 ("A Modified Criterion for Evaluating 
the Remaining Strength of Corroded Pipe" (December 1989)). These 
documents are incorporated by reference and are available at the addresses 
listed in §195.3. 

(C) A dent located on the top of the pipeline (above the 4 and 8 o'clock 
positions) that has any indication of metal loss, cracking or a stress riser. 

(D) A dent located on the top of the pipeline (above the 4 and 8 o'clock 
positions) with a depth greater than 6% of the nominal pipe diameter. 

(E) An anomaly that in the judgment of the person designated by the operator 
to evaluate the assessment results requires immediate action. 

(ii) 60-day conditions. Except for conditions listed in paragraph (h)(4)(i) of this 
section, an operator must schedule evaluation and remediation of the following 
conditions within 60 days of discovery of condition. 

(A) A dent located on the top of the pipeline (above the 4 and 8 o'clock 
positions) with a depth greater than 3% of the pipeline diameter (greater than 
0.250 inches in depth for a pipeline diameter less than Nominal Pipe Size 
(NPS) 12). 

(B) A dent located on the bottom of the pipeline that has any indication of 
metal loss, cracking or a stress riser.  

(iii) 180-day conditions. Except for conditions listed in paragraph (h)(4)(i) or (ii) of 
this section, an operator must schedule evaluation and remediation of the following 
within 180 days of discovery of the condition: 

(A) A dent with a depth greater than 2% of the pipeline's diameter (0.250 
inches in depth for a pipeline diameter less than NPS 12) that affects pipe 
curvature at a girth weld or a longitudinal seam weld. 

(B) A dent located on the top of the pipeline (above 4 and 8 o'clock position) 
with a depth greater than 2% of the pipeline's diameter (0.250 inches in depth 
for a pipeline diameter less than NPS 12). 

(C) A dent located on the bottom of the pipeline with a depth greater than 6% 
of the pipeline's diameter. 

(D) A calculation of the remaining strength of the pipe shows an operating 
pressure that is less than the current established maximum operating pressure 
at the location of the anomaly. Suitable remaining strength calculation 
methods include, but are not limited to, ASME/ANSI B31G ("Manual for 
Determining the Remaining Strength of Corroded Pipelines" (1991)) or AGA 
Pipeline Research Committee Project PR-3-805 ("A Modified Criterion for 
Evaluating the Remaining Strength of Corroded Pipe" (December 1989)). 
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These documents are incorporated by reference and are available at the 
addresses listed in §195.3. 

(E) An area of general corrosion with a predicted metal loss greater than 50% 
of nominal wall. 

(F) Predicted metal loss greater than 50% of nominal wall that is located at a 
crossing of another pipeline, or is in an area with widespread circumferential 
corrosion, or is in an area that could affect a girth weld. 

(G) A potential crack indication that when excavated is determined to be a 
crack. 

(H) Corrosion of or along a longitudinal seam weld. 

(I) A gouge or groove greater than 12.5% of nominal wall. 

(iv) Other conditions. In addition to the conditions listed in paragraphs (h)(4)(i) 
through (iii) of this section, an operator must evaluate any condition identified by an 
integrity assessment or information analysis that could impair the integrity of the 
pipeline, and as appropriate, schedule the condition for remediation. Appendix C of 
this part contains guidance concerning other conditions that an operator should 
evaluate.” 

6.3 Comparison of 49 CFR 192 and 49 CFR 195 Regarding Dents 

As shown in the previous sections, 49 CFR 192 and 49 CFR 195 differ to a degree on the disposition 
of anomalies. 49 CFR 192 places anomalies into one of three categories: immediate repair 
conditions, one-year conditions, and monitored conditions; while 49 CFR 195 defines immediate 
conditions, 60-day conditions, 180-day conditions, and other conditions. A comparison of the 
designated condition for the various types of dent related anomalies is given in Table 6.1. 
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Table 6.1 Comparison of 49 CFR 192 and 49 CFR 195 Regarding Dents 

Anomaly 49 CFR 192 Condition 49 CFR 195 Condition 

A dent that has any indication of metal loss, 
cracking or a stress riser. 

Immediate Upper 2/3 of the pipe — 
Immediate 
Lower 1/3 of the pipe — 60-day 

A dent with a depth greater than 6% of the 
nominal pipe diameter. 

Upper 2/3 of the pipe — One-
year1. 
Lower 1/3 of the pipe — Monitored 

Upper 2/3 of the pipe — 
Immediate 
Lower 1/3 of the pipe — 180-day 

A dent with a depth greater than 3% of the 
nominal pipe diameter on the upper 2/3 of the 
pipe. 

Not defined 60-day 

A dent with a depth greater than 2% of the 
nominal pipe diameter on the upper 2/3 of the 
pipe. 

Not defined 180-day 

A dent with a depth greater than 2% of the 
pipeline’s diameter that affects pipe curvature 
at a girth weld or at a longitudinal seam weld 

One-year1 180-day 

1 Can be downgraded to a monitored condition providing engineering analyses of the dent demonstrate that critical strain 
levels are not exceeded. In the case of a dent affecting a weld, the weld properties must also be considered. 

6.4 ASME B31.4 

As of July 14, 2004, 49 CFR 195 incorporates by reference ASME B31.4-1998. Paragraph 451.6.2 
“Disposition of Defects” defines dents that should be removed or repaired as: 

a. Dents which affect the pipe curvature at the pipe seam or at any girth weld 

b. Dents containing a scratch, gouge, or groove; 

c. Dents exceeding a depth of ¼ in. (6 mm) in pipe NPS 4 and smaller, or 6% of the 
nominal pipe diameter in sizes greater than NPS 4; 

ASME B31.4-2002 added a fourth condition requiring repair or removal of dents. 

d. Dents containing external corrosion where the remaining wall thickness is less than 
87.5% of that required for design. 

Revising the reference in §195.3 to the current edition of ASME B31.4 would have no practical 
effect unless §195.452 (h), which identifies a dent with any indication of metal loss as a repair 
condition, were also revised. 

6.5 ASME B31.8 

Both 49 CFR 192 and 49 CFR 195 currently incorporate ASME B31.8-1995 by reference. Dents 
discovered during installation are discussed in section 841.243, which states: 

“(a) A dent may be defined as a depression which produces a gross disturbance in the 
curvature of the pipe wall (as opposed to a scratch or gouge, which reduces the pipe 
wall thickness). The depth of a dent shall be measured as the gap between the lowest 
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point of the dent and a prolongation of the original contour of the pipe in any 
direction. 

(b) A dent, as defined in para. 841.234 (a), which contains a stress concentrator such 
as a scratch, gouge, groove, or arc burn shall be removed by cutting out the damaged 
portion of the pipe as a cylinder. 

(c) All dents that affect the curvature of the pipe at the longitudinal weld or any 
circumferential weld shall be removed. All dents that exceed a maximum depth of ¼ 
in. in pipe NPS 12 and smaller, or 2% of the nominal pipe diameter in all pipe greater 
than NPS 12 shall not be permitted in pipelines or mains intended to operate at 40% 
or more of the specified minimum yield strength. When dents are removed, the 
damaged portion of the pipe shall be cut out as a cylinder. Insert patching and 
pounding out of the dents is prohibited.” 

Paragraph 841.243 limits all dents to a maximum depth of only 2 percent of the nominal diameter, 
but paragraph 841 is in Chapter IV, entitled Design, Installation, and Testing, which implies that 
paragraph 841.243 applies only during new construction to manage contractor performance. 

Chapter V Operating and Maintenance Procedures contains paragraph 851 Pipeline Maintenance. 
The following requirements for paragraph 851.4 would apply for managing pipeline integrity. 

“…Smooth dents in existing pipelines do not require repair unless they: 

a. contain a stress concentrator, such as a scratch, gouge, groove, or arc 
burn; 

b. affect the curvature of the pipe at the longitudinal weld or a 
circumferential weld; or 

c. exceed a maximum depth of 6% of nominal pipe diameter.” 

In the 2003 edition of ASME B31.8, paragraph 851.4 was completely revised and now states in 
paragraph 851.41: 

“(a) Dents are indentations of the pipe or distortions of the pipe’s circular cross 
section caused by external forces. 

(b) Plain dents are dents that vary smoothly and do not contain creases, mechanical 
damage [such as described in 851.41(c)] corrosion, arc burns, girth, or seam welds. 

(c) Mechanical damage is damage to the pipe surface caused by external forces. 
Mechanical damage includes features such as creasing of the pipe wall, gouges, 
scrapes, smeared metal, and metal loss not due to corrosion. Cracking may or may 
not be present in conjunction with mechanical damage. Denting of the pipe may or 
may not be apparent in conjunction with mechanical damage. 

(d) Plain dents are defined as injurious if they exceed a depth of 6% of the nominal 
pipe diameter. Plain dents of any depth are acceptable provided strain levels 
associated with the deformation do not exceed 6% strain. Strain levels may be 
calculated in accordance with Appendix R or other engineering methodology. In 
evaluating the depth of plain dents, the need for the segment to be able to safely pass 
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an internal inspection or cleaning device shall also be considered. Any dents that are 
not acceptable for this purpose should be removed prior to passing these devices 
through the segment, even if the dent is not injurious. 

(e) All external mechanical damage with or without concurrent visible indentation of 
the pipe is considered injurious. 

(f) Dents that contain corrosion are injurious if the corrosion is in excess of what is 
allowed by para. 862.213, or if they exceed a depth of 6% of the nominal pipe 
diameter. 

(g) Dents that contain stress corrosion cracks or other cracks are injurious. 

(h) Dents that affect ductile girth or seam welds are injurious if they exceed a depth 
of 2% of the nominal pipe diameter, except those evaluated and determined to be 
safe by an engineering analysis that considers weld quality, nondestructive 
examinations, and operation of the pipeline are acceptable provided strain levels 
associated with the deformation do not exceed 4%. It is the operator’s responsibility 
to establish the quality level of the weld. 

(i) Dents of any depth that affect non-ductile welds, such as acetylene girth welds or 
seam welds that are prone to brittle fracture, are injurious.” 

Paragraph 851.42 goes on to state: 

“(a) Injurious dents and mechanical damage shall be removed or repaired by one of 
the methods below, or the operating pressure shall be reduced. The reduced pressure 
shall not exceed 80% of the operating pressure experienced by the injurious feature 
at the time of discovery. Pressure reduction does not constitute a permanent repair.” 

Even though ASME B31.8-2003 is not currently referenced in 49 CFR 192, the requirements of this 
edition are generally aligned and compatible with 49 CFR 192. 

6.6 API 1156 

API 1156 and its addendum present results from numerous experimental and finite element analyses 
to determine the effects of smooth dents and rock dents on the integrity of liquid petroleum 
pipelines. The report provides conclusions related to potential significance of dents detected by ILI 
both in terms of severity and location, as well as information on dent behavior and the potential 
failure mechanisms. 

From an operator’s point of view, the most useful piece of information in this report is probably 
Appendix C of the Addendum, which contains a field guide for the assessment of dents and buckles 
that includes methods for prioritizing these anomalies based on ILI results and assessment 
techniques based on excavation and examination. 

6.7 API 1160 

API Standard 1160, contains information about dents in Appendix A “Anomaly Types, Cause, and 
Concerns.” Section 9.6 “Strategy for Responding to Anomalies Identified by In-Line Inspections” 
states: 
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“An operator shall take action to address pipeline integrity concerns identified during 
the evaluation of in-line inspection data. If a condition exists on the pipeline that 
presents an “immediate concern”…the operator shall initiate mitigative actions 
within five days in order to continue to operate the affected part of the system. 
Mitigation action is based on regulatory requirements, company guidelines, and 
assessment of risk. 

When a pipeline is inspected by an in-line inspection tool, the final results of the 
inspection should be provided to the operator within six months. However, certain 
types of potential defects should be brought to the operator’s attention through a 
preliminary report…” 

The descriptions of what constitute an “immediate concern” are slightly different than the 
“Immediate” conditions in the CFR provisions; however, there are close parallels in most cases. 
Once an “immediate concern” is identified, Section 9.6 states: 

“Mitigative action…shall be based on in-line inspection data analysis without 
excavation verification. Temporary mitigative action(s) shall be initiated as soon as 
possible; within five days of receipt of the preliminary in-line inspection report and 
shall remain in place until the anomaly can be excavated and assessed. Permanent 
mitigative action such as repairs, if required, should be accomplished within thirty 
days of receipt of the preliminary in-line inspection report.” 
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7 Conclusions and Recommendations 
While the main purpose of this report was to evaluate the effect of bottom-side dents on pipeline 
integrity, the discussion expanded somewhat naturally to include additional issues pertaining to 
integrity assessment of dents. Flow charts were prepared to illustrate the dent evaluation process for 
49 CFR 192, 49 CFR 195, ASME B31.4-2002 and ASME B31.8-2003. These flow charts are 
presented as Figure 7.1, Figure 7.2, Figure 7.3, and Figure 7.4, respectively. A suggested dent 
evaluation process that expands on the ASME B31.8 recommended practice and could be applied to 
both gas and liquid pipelines was also prepared and is presented as Figure 7.5. 
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Figure 7.1 49 CFR 192 Dent Evaluation Process 
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Figure 7.2 49 CFR 195 Dent Evaluation Process 
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Figure 7.3 ASME B31.8-2003 Dent Evaluation Process 
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Figure 7.4 ASME B31.4-2002 Dent Evaluation Process 
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Figure 7.5 Suggested Dent Evaluation Process 

By following this procedure, dents are only subjected to the strain criterion if they exceed some 
deformation limit. Based on the examples shown in Section 3, it is apparent that the strain criterion 
could be violated even below the deformation limit. Therefore, it is recommended that the strain 
criteria be considered by for use by operators even for dents that meet the existing depth acceptance 
criteria. 
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The main difference between the suggested dent evaluation process and the ASME B31.8 process is 
the additional check for susceptibility to pressure-cycle fatigue for all situations except restrained 
bottom-side dents. This exception is based on research data, which indicates that if a dent is 
subjected to pressure cycling, the remaining life is typically on the order of one order of magnitude 
higher if the dent is restrained (as is typical for bottom-side dents) than if unrestrained.  The 
potential benefits of leaving a dent in a pipeline (subject to pressure-cycle fatigue or not) must be 
weighed against the level of effort required for additional monitoring to ensure the pipeline's 
integrity is not compromised. Monitoring activities must account for the myriad of ancillary 
problems that may develop (e.g., coating damage, shielding from cathodic protection, corrosion, 
stress corrosion cracking, hydrogen cracking, or punctures due to continued settlement).  
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