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1.0 BACKGROUND

The Office of Hazardous Materials Safety, under the U.S. Department of Transportation’s Pipeline
& Hazardous Materials Safety Administration (DOT/PHMSA), has the responsibility of assuring
the safe shipment of high-pressure gas cylinders that are manufactured in accordance with 49
CFR and special permits. The majority of the composite cylinders used for transportation of high-
pressure gases are manufactured in accordance with DOT specification FRP (Fiber-Reinforced
Polymer) and CFFC (Carbon Fiber Reinforced Cylinders). In recent years, the use of composite
cylinders has become more widespread in breathing apparatus and industrial gas service.
PHMSA has granted several special permits for the manufacture and use of composite cylinders
that are authorized for transportation of various compressed gases; including hydrogen at service
pressures not exceeding 6,500 psi and a maximum water capacity of 200 pounds (24 liters).

These cylinders are required to undergo a hydrostatic test and a visual inspection every five
years. However, PHMSA is aware of the limitations of this method in the detection of certain
types of defects and damage that may affect the integrity of composite cylinders over time.
Therefore, reliable Non-Destructive Examination (NDE) method(s) that will increase the accuracy
in the detection of critical flaws are required. The creation of new testing methods would be of
particular use considering the numerous public requests for composite cylinder life extensions
beyond the current 15-year limit. Unfortunately, without an NDE method that can more accurately
assess damage caused during normal usage, such life extensions may not be possible. For
these reasons, the current effort to evaluate composite cylinders by an effective NDE method is
proposed. This current work statement has culminated as a follow up to the DOT sponsored
feasibility study in which several potential NDE techniques were reviewed and assessed for their
effectiveness at detecting defects in carbon composite high-pressure gas cylinders.

2.0 LONG TERM OBJECTIVE

The objective of this effort is to determine the quantitative capability of an NDE technique (e.qg.
acoustic emission) to accurately detect and assess operational impact damage in composite
cylinders. The knowledge gained from this effort will then be used to design an optimal testing
procedure that will subsequently be recommended for use in composite cylinder re-qualification.
In support of this long-term objective, the following items are the staged milestones that must be
crossed before a field-ready re-testing technique could be implemented:

e Determine critical flaw types and sizes.

e Develop an NDE method that is capable of detecting and quantitatively measuring a flaw
produced by an impact. The NDE data must be reproducible and clearly distinguishes the
following:

- A new cylinder with no impact damage.
- A cylinder with moderate (acceptable) impact damage.

- A cylinder with severe (which may cause failure before the next re-qualification)
impact damage

o Verify the NDE for use at field for re-qualification of composite cylinders.

3.0 SPECIFIC OBJECTIVES - Phase |

3.1 Classification of Applied Impact Damage
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3.2

3.3

3.4

4.0

Assess and document the types of impact damage to which a composite cylinder may be
subjected and the scenarios under which each type would likely occur.

Obtain additional information relating to impact damage.
Identify key parameters that must be included in modeling and testing.

Trial Impacting

Perform trial impact testing on 15 CFFC'’s to determine the damage encountered during
normal field usage.

Document the following:
- NDE procedures developed
- Values for the key parameter set (e.g. energy, velocity, mass, etc...)
- Visual assessment of the cylinders with onset damage

If necessary, perform an evaluation of the liner to determine if impact damage to it plays
a significant role in the reduction of residual strength.

Correlation between impact and selected energies.

Correlation between Destructive Impact Damage and NDE Data

Perform NDE on impact sites
Thermally de-ply the damage zone to evaluate the extent of fiber damage
Establish preliminary correlation between NDE data and the imposed damages

Impact Effects Modeling

Determine the extent of material property data needed (lamina/laminate) for Finite
Element Modeling and perform any necessary testing in support of this need

Structural Testing

Establish testing method/procedure

Determine baseline for undamaged cylinder strength

Characterize acoustic emission (AE) response of undamaged cylinders
Characterize AE of damaged cylinders tested

Establish baseline AE measurement for the damaged and undamaged cylinders

PROGRESS

4.1 Classification of Applied Impact Damage

Assess and document the types of impact damage to which a composite cylinder may be
subjected and the scenarios under which each type would likely occur.
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Unfortunately our attempts to gather information about likely damage scenarios were
unsuccessful. Carleton declined the opportunity to share their database with us.
Information obtained in discussions with Carleton personnel was qualitative at best. We
do know that cylinders frequently come in contact with hard objects during routine
handling. Examples include a drop from the height of a truck or cylinder carrier. The
impacts, if hard enough can cause visible scuffmarks, delaminations and fiber breakage
within the composite over wrap and dents within the aluminum liner. The magnitudes of
these damage types however are not well documented. We were not able to find any
information that defined a damage level that would cause a cylinder to fail during its life
cycle.

Lack of information on damage levels is critical for designing an effective test program.
Since a limited number of cylinders were available for the Phase | work the impact testing
must make efficient use of available assets. Given these constraints we decided to use a
couple of cylinders to induce several levels of damage before designing the main test
program. Damage level information (determined from NDE and deply methods) coupled
with ATK's prior experience with damage effects testing thus became the basis for the
Phase | test matrix that is describe later.

Obtain additional information relating to impact damage.
No additional information was obtained.

Identify key parameters that must be included in modeling and testing.

Key parameters that must be included in impact event modeling and testing include the
following:

- Impactor shape and hardness

- Impactor mass

- Impactor velocity

- Impactor angle of incidence

- Cylinder design (materials, composite layup, liner type, etc.)

- Cylinder support condition

- Cylinder pressure at time of impact

- Cylinder age (number of pressure cycles)

Determining the effects of all these parameters and their various combinations makes
impact test programs complex and costly. Our experience with other impact test
programs has taught us which parameters are most important however. The Phase |
impact test matrix was designed to provide preliminary assessments of damage effects
over a realistic range of damage levels. This approach allowed us to focus our primary
effort on the NDE damage discrimination method. Phase | impact test parameters were
selected as follows:

- Impactor shape - 6 inch diameter hemisphere, steel

- Impactor mass — 35 to 100 Ibm

- Impactor velocity — low velocity, 70-100 inch per second

- Impactor angel of incidence — normal

- Cylinder design — Carleton composite overwrapped, aluminum linear

- Cylinder support condition (full cylinder) — wooden saddle

- Cylinder support condition (half cylinder) — steel plate, picture frame support
- Cylinder pressure during impact — ambient

- Cylinder age - virgin
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4.2 Trial Impacting

Perform trial impact testing on 15 CFFC’s to determine the damage encountered during

normal field usage.

One of the first tasks of the Phase | effort involved creating a specific test matrix so that
available cylinders could be used efficiently. Each cylinder in the test matrix had a specific
objective. The objectives are designed to determine things such as cylinder design, create

a range of levels of damage levels, evaluate NDE methods, determine cylinder undamaged

and damaged strength, and to measure acoustic emission response during strength testing
for undamaged and damaged cylinders. The matrix was intentionally made smaller than
the number of available cylinders so that a second round of testing could be performed if
necessary. The Phase | test matrix is shown in Table I.

Since we were unable to obtain detailed design information from Carleton we choose to
dissect one cylinder to determine details of the cylinder design. This approach provided
information about the liner configuration and lay up of the composite over wrap. Figure 1
shows a photograph of the cut cylinder. Note that the both glass and graphite plies are

visible along with the liner profile. Although we can see the basic design these data are not

enough to perform detailed finite element modeling. Laminate mechanical properties are

needed.

Table | — Phase | Test Matrix

Cut for
Inspection/ Pre Impact
Serial Uamage Candition AE Thermal Deply Burst Plan DI
B108-52085 Camaged Mo Ia Ma Cut bottle to determine design feastures and matarials Yes
B108-52086 Undamaged Yes Mo Yes Burst as Control Mo
B106-52075 Undamaged Yes Mo Yes Burst a5 Control Yes
B109-52078 Undamaged Yes [4a Yes Burst as Control Yes
Impact 1/2 bottle after cutling, Other 142 wsed for NDI baseline,
105- ] Y N : ™
6109-52062 Camaged ] £3 o Thermal deply (4) impact locations ]
Impact 172 bottle before cutting Cut in half and impact ather half
with same energy. Impact should be just encugh energy to dent
Btac-92079 Bamaged L Yes Ho aluminum, Investigate NDI from inside. Thermal deply afl (8) Mo
impact locations
G109-52089 Camaged Yeg Mo Yes Impact with Just encugh energy to dent aluminwem, NDI and burst Yes
E108-520890 Carmaged Vs Ma Yes Impact with anough energy o darmage composite, MDI and burst Yas
E108-52083 Damaged Yes o Yes Impact with energy bevel wall above standard drop test level Tes

Page 5 of 35




We chose to dissect one
bottle because Carleton
would not provide us with
bottle design details.

Glass clear coat/hoop/helical
plies

Graphite helical
plies

Graphite hoop
plies

Aluminum liner—

Figure 1. Cut cylinder shows laminate and liner configuration

Cut cylinders were used to perform a preliminary round of trial impact tests. These tests

were designed to identify the damage modes that result from progressively higher energy
levels. We hoped to span the damage levels that typically occur in fielded cylinders. We
do not yet know if we were successful. Cut cylinders provided an opportunity to measure
damage (dent) in the liner aluminum liner. We were particularly interested is seeing how
the dent shape varied with increasing impact energy.

Document the following: NDE procedures developed, values for key parameters set, and
visual assessment of cylinders with onset of damage.

NDE techniques performed an important role in the Phase | test program to provide
information about damage states that result from impact events. Damage level
measurement helped guide the experimental effort whose goal as to provide a wide range
of damage levels. A primary goal was to establish the relationship of damage level and
impact energy. This information was used to select damage levels for the strength test
cylinders.

Damage modes that are important in determining cylinder strength include delamination
location and size and level of fiber breakage. The damage to the aluminum liner is
probably also important but we have no prior experience with the effects of this damage
mode. We selected a phased array ultrasonic technique to accurately measure
delamination sizes. This decision was based on work from other impact damage programs.
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The phased array technology provides fast, high spatial resolution data. Phased array
ultrasonic scans performed two primary functions. First, it verified that strength test
cylinders had no pre-existing damage prior to testing. Second, each impact site was
scanned to provide delamination size, location, and depth. Figure 2 shows a photograph of
three impact sites on cylinder 52082. The impact sites are distinguishable by the light
colored regions. The white rectangular box is the scan area for a phased array scan.
Figure 3 shows the phased array C-scans two impact sites. Note that the C-scan images
clearly show lateral extent of the damage. The B-scan images in Figure 4 show depth of
the delaminations. It should be noted that some stacked configuration of delaminations
can’'t be imaged completely due to blockage of sound transmission.

Visual examination of the cylinders provided a secondary method for determining
delamination size and location. The visual method however is limited to delamination
within the semi-transparent fiberglass layer. Figures 5 and 6 show visible impact damage
delaminations that occur between the hoop and helical layers of the glass over wrap. This
damage mode is the first to occur during an impact event. A visible delamination will
therefore be a reliable indicator that an impact event has occurred. Its size and shape
cannot be used to assess damage deeper within the laminate however.

Since there is currently no reliable NDE method for measuring fiber breakage within a ply
this damage parameter was measured on select samples with a destructive method known
as deplying. The deply method involves cutting out the impact site and baking off the resin
matrix. This process leaves the individual composite plies in tact so that they can be
evaluated and photographed. Figure 15 shows a photograph of a deply sample. Note that
ply cracks are visible in both hoop and helical layers. Measuring crack lengths for each ply
allows one to construct a 3 D location map for all cracks.

Perform an evaluation of the liner to determine if impact damage to it plays a significant role
in the reduction of residual strength.

The role of the liner is important when considering how a composite over wrapped cylinder
responds to an impact event. (We expect that the damage state will be quite different for a
cylinder with a plastic liner for an equivalent impact event.) If the composite over wrap
deforms enough during an impact the aluminum liner will permanently dent. This dent will
disrupt the normal stress transfer that occurs
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Figure 2. Scan zone for two impact sites
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between the liner and it's over wrap while the cylinder is pressurized. The effect of the dent
on cylinder performance during cyclic loading is not clear. The other reason the dent is
important is because its creation absorbs impact energy. This absorption most likely
reduces the amount of damage in the composite over rap.

We intentionally chose to impact some cut cylinders so that the liner could be visually
inspected. Dent depths and profiles were measured for all cut cylinder samples that were
impacted. Figure 7 shows a photograph of one such impacted cylinder half segment. Note
that the dents have smooth profiles. Expectedly we found that dent depths correlate with
impact energy. Figure 8 shows this correlation. This observation suggests that dent
measurement might be an effective means of nondestructively determining approximate
damage levels. A dent scanner could be developed to exploit this idea.

Correlation of impact damage and with selected energies.

It is well known that impact damage levels correlate with impact energy because the
creation of damage is a fundamental mechanism that absorbs this energy. The correlation
for the Carleton cylinders tested so far is shown in Figure 9. Note that this correlation is
with the measured delamination size as determined from the ultrasonic scans.
Delaminations however are not the most critical form of damage in a pressure vessel. Our
experience is that fiber breakage is the most important damage mode. Figure 9 shows the
relationship between impact energy and the number of hoop plies damaged. Note that
hoop tow damage begins at around 20 ft-Ibs impact energy. Above this level to around 100
ft-Ibs the relationship appears to be approximately linear. We only impacted two cylinders,
52082 and 52093, above the 100 ft-Ib energy level. Fiber breakage on the 52082 half
cylinder (182 ft-Ibs) was extreme and could not be easily quantified. Fiber breakage on
cylinder 52093 (245 ft-Ibs) is unknown because it was pressurized to burst.

4.3 Correlation Between Destructive Impact Damage and NDE Data

Perform NDE of Impact Sites.

All impact sites, with the exception of the 245 ft-lb cylinder site, were inspected with both
phased array and visual methods. In addition, cut cylinder liner dents in were measured
with a micrometer device. Phased array scan results are shown in Figures 10 for cylinder
52079 and 11for cylinders 52089 and 52090. Visual data are shown in the photographs of
Figures 12 and 13 for cylinder 52079 and 14 for cylinder 52093. Dent sizing data are listed
in Table 1.

Thermally deply the damage zone to evaluate the extent of fiber damage.
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Cylinders 52079 and 52082, both cut cylinders, were used to obtain fiber breakage data
using the deply technique. Each cut cylinder had multiple impact sites in order to minimize
the number of cylinders that were needed. Hoop cracks were measured by evaluating
individual plies as shown in Figure 15. Hoop crack size data are listed in Table II.

Establish preliminary correlation between NDE data and the imposed damages.

As expected there is a general correlation between impact energy and the amount of
damage in the composite over rap (as measured by NDE methods). For the impact
energies used thus far in this study the correlation does not extend to burst strength
reduction. This finding suggests that we have not yet identified the critical damage (lowers
burst strength to unacceptable levels) threshold.

4.4 Impact Effects Modeling

4.5

Determine the extent of material property data needed (lamina/laminate) for Finite Element
Modeling and perform any necessary testing in support of this need.

Damage modeling in composite laminates requires detailed information about the structure
design in addition to accurate laminate material properties. It is necessary to determine
direction specific material properties. Material testing is needed to determine these
properties if they are not already known. These material properties are used to model the
stiffness response as well as the strength capability of the composite. Table Il shows a
test matrix for generating lamina composite properties that can be used to create an
orthotropic material definition for the composite in a finite element model. Figure 16 shows
a typical composite laminate FE model that would attempt to model the effects of an impact
event.

Structural Testing

Establish testing method/procedure.

Cylinder hydro testing was performed at ATK’s Promontory high-pressure test facility using
a standard test protocol. The protocol simply involves applying pressure at pre-defined
ramp rates. Cost restraints limited the amount of instrumentation that was used on the test
cylinders. Mid-cylinder strain as a function of pressure was measured with two long wire
‘belly band’ gages. Acoustic emission was measured with six B-1025 broadband AE
sensors manufactured by Digital Wave Corporation. Sensors were placed every 120°
inboard of the cylinder tangent lines. Figure 17 shows a photograph of the test
configuration.
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Table lll. Material Properties Needed for FE Analysis

Test
Description Objective Test Item Data Usage
Tensile Test Obta}ln tensile properties: Stress, Tow Test Establlsfh resin
Strain, Modulus translation factor
Compression Obtain compressive properties Flate Plate
P along fiber: Modulus, Strength, from hoop Allowable
Test ] . . ; .
Strain, Poisson's Ratio winding
Mechanical Tension transverse to fiber:
Properties: Modulus, Strength, Strain, 4-inch Tube | Allowable
Tension Poisson's Ratio
Mechanical In-plane shear: Modulus
Properties: In- P S : X . 4-inch Tube | Allowable
Strength, Strain, Poisson's Ratio
plane Shear
Mechanical
Propertl(_es: Interlaminar Shear Strength 4-inch Tube | Allowable
Interlaminar
Shear
Mode-I Fracture | Used for Damage/Crack Neat Resin
. Allowable
Toughness Propagation Sample
Mode-Ii Used for Damage/Crack Neat Resin
Fracture . Allowable
Propagation Sample
Toughness
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Cylinder testing utilized a standard re-qualification pressure cycle. This cycle linearly
increased the pressure at a rate of approximately 10 psi per second to proof pressure and
then a pressure hold for 300 seconds. Pressure unloading was done at 130 psi per
second. Burst tests are done using a straight ramp to failure using a 10 psi per second rate.

Determine baseline for undamaged cylinder strength.

Three cylinders were used to determine baseline undamaged strength. These cylinders
failed at 19,344, 18,061, and 18,494 psi. These delivered strengths fall within a normal
strength distribution we obtained from Carleton. Figure 18 shows our strength test results
overlaid with the Carleton strength distribution data.

MHormal Distribusion

Mean = 18423 1 Histogram: Burst
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Figure 18. Undamaged cylinder strength distribution data

Characterize acoustic emission (AE) response of undamaged cylinders.

ATK has many years of experience with acoustic emission monitoring of pressure vessels
undergoing hydro testing. We have established a baseline setup for instrument settings.
These settings include amplifier and filter settings. These settings were used on the DOT
cylinders with good results. Instrument performance is verified prior to test using standard
pencil breaks on the surface of the cylinder.

Acoustic emission response of the undamaged composite over wrapped cylinders was
typical of other composite pressure vessels that we test. This behavior is best visualized in
the cumulative events versus time plot. The cumulative events versus time plot is shown in
Figure 19 for cylinder 52075. Symbol type and color identifies the sensor location and
symbol size identifies the event energy. Note that the events are uniformly distributed
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between all six sensors and that most event energies are low (small symbols). This
behavior is typical of matrix cracking events. Event rates for all sensors are also similar.
These data suggest the cylinder has uniform composite properties. When the pressure
hold is reached event rates quickly drop to zero. This behavior is typical of well-made,

undamaged pressure vessels. Events versus time plots are shown together for 52075 and
52078 cylinders in Figure 20. Note that the same behavior patterns are apparent in each of

the cylinders. The slight difference in the total number of events is not unusual.

Events vs. Time per Channel
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= Chd
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Symbol type and color
identifies sensor location.
Symbol size indicates event
energy.

- small (< pencil break [pb])
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Figure 19. Typical undamaged cylinder AE results

u T T u T T T T T T T T T T T T T T T T T T T T T T T T T T T = T T
0 20 40 G0 &0 100 120 140 160 180 200 220 240 260 280 300 320 340 360 350 400 420 440 460 450 500 520 540 560 580 600 620 640 660 630 700 720

Page 29 of 35




PHAIEEEREREE

REZRIREAT

s

£
EEYHUBALREREYE

HEHE

Events s, Time per Channel

Undamaged
52075

0 20 & 60 50 100 120 14D 160 180 200 330 140 260 260 300 320 M0
ima

E
Tim {wec

360 400 420 &40 460 450 €00 520 580 560 SE) £00 620 £4) BED £B0 700 T2
oni)

LverRs i T i Channel

S5

Undamaged
52078 :

#IBEEREE

ERBZaP

LERET

HEHEHESS

SHEEE

0 240 20

0 W0

} WO E S0 420 20 48 S50 S0 S 40 S0 SO 0

" Time (secandsi

Figure 20. Events versus time plots for the two control undamaged cylinders

Characterize AE of damaged cylinders tested.

Three cylinders were tested after being damaged from an impact event. Impact energies
were selected during the impact testing described above. Selected impact energies were
24.8, 40.6, and 245 ft-lbs. These impact energies cover the composite damage range from
lightly damaged to extreme damage (relative to the standard drop test damage level). Test
protocol was the same as the undamaged cylinder protocol. Figure 21 shows the
cumulative events versus time plots for these three cylinders. Note that the general
behavior was similar for all damaged bottles even though the damage level was different.
Acoustic behavior for the damaged cylinders was also similar to the undamaged cylinders.
This similarity can be seen in Figure 22. All cylinders exhibit uniform AE event rates during
the ramp to proof pressure and a quick roll off of event rate during pressure hold. There
was some variation in the total number of events however. Variation in total number of
events is not unusual even for parts made from the same material lot.

Since the apparent damage level in the 245 ft-lb damaged cylinder was thought to be quite
severe it was initially surprising that the AE signature did not discriminate this cylinder.
However when one looks at the delivered strength of 16,681 psi and the stress strain
behavior (Figure 23) it is clear that the level damage was not critical to the performance of
this cylinder, at least in the re-qualification test scenario. The 16,681 delivered strength falls
within the strength distribution data we received from Carleton (Figure 24) so the damage
level was no more severe than standard manufacturing variation.

Testing to date has not considered damage effects when pressure cycling is considered. It
is expected that cyclic loading will further degrade cylinder strength. We do not know by
how much however.

Characterize baseline AE measurement for the damaged and undamaged cylinders.

The intent of this task was to establish a baseline measurement method for the AE
technique. It is our current belief that the methods used in these tests are adequate for
discriminating severely damaged cylinders. However this belief cannot be validated until
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further testing is done on cylinders with higher levels of damage since we have not
determined the critical damage level yet. This will have to be left for a Phase Il effect.
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Figure 21. AE events versus time plots for the damaged cylinders
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Figure 22. AE events versus time plots for all cylinders
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Bottle Strain Behavior

—— Bottle 52075 (undamaged)
—— Bottle 52093 (245 ft-Ibs impact)
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Figure 23. Stress-strain behavior of virgin and 245 ft Ib cylinders
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Figure 24. Burst results shown on Carleton strength distribution
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5.0

6.0

SUMMARY

The Phase | effort was a qualified success. We were able to establish impact damage
methods for the subject test cylinders, we developed a phased array method for sizing
damage zone delaminations, and demonstrated the deply technique’s ability to
quantitatively measure fiber damage. We also induced several levels of damage in test
cylinders so we know the basic fracture mechanisms that occur from impact events. We
established procedures for applying acoustic emission instrumentation to cylinder re-
gualification pressure cycles and measured the acoustic response of cylinders with varying
levels of damage. What we didn’t successfully do was identify the critical damage
threshold for this cylinder type for a quasi-static load condition. As it turns out the defined
scope of the Phase | effort was inadequate in this regard. Phase | also did not address any
effects of cyclic loading.

It is worth mentioning that this particular cylinder design is very robust in terms of its ability
to withstand a high energy impact event. We were quite surprised to see the high burst
strength in the 245 ft-Ib cylinder. Cylinders with this level of damage would most likely be
rejected at re-qualification time based on visual acceptance criteria. We are note sure this
would be true for cylinders with plastic liners.

RECOMMENDATIONS

The Phase | effort demonstrated our basic methodology for approaching the impact
damage issue. We have confidence that this method will ultimately lead produce the
information that DOT is seeking. Going forward it is obvious we need to direct our thinking
to the effect of damage with a cyclic loading scenario. Our phase Il proposal will address
this issue. For other cylinder designs we would recommend pursuing a program that is
similar to phase I.
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