June 11, 2021

DOT-SP 15258
(SIXTH REVISION)

EXPIRATION DATE: 2025-05-31

(FOR RENEWAL, SEE 49 CFR 107.109)

1. GRANTEE: Versum Materials US, LLC
 Allentown, PA

2. PURPOSE AND LIMITATION:
 a. This special permit authorizes the use of certain DOT
 Specification 3A, 3AA and 3AL cylinders for the
 transportation in commerce of the compressed gases listed in
 paragraph 6. The cylinders are retested by utilizing the
 100 percent ultrasonic examination (UE) in lieu of the
 internal visual inspection and the hydrostatic retest as
 required in § 180.205. This special permit provides no
 relief from the Hazardous Materials Regulations (HMR) other
 than as specifically stated herein. The most recent
 revision supersedes all previous revisions.
 b. The safety analyses performed in the development of
 this special permit only considered the hazards and risks
 associated with the transportation in commerce.
 c. No party status will be granted to this special permit.

4. REGULATIONS FROM WHICH EXEMPTED: 49 CFR §§ 172.203(a) and
 172.301(c) in that marking the special permit number is
 waived; and § 180.205 in that the ultrasonic examination
 (UE) is performed in lieu of the specified internal visual
 examination and hydrostatic pressure test.
NOTE: This does not relieve the holder of this special permit from securing and maintaining a valid approval for retesting cylinders from the Associate Administrator for Hazardous Materials Safety.

5. BASIS: This special permit is based on the application of Versum Materials US, LLC dated January 27, 2021, submitted in accordance with § 107.109.

6. HAZARDOUS MATERIALS (49 CFR 172.101):

<table>
<thead>
<tr>
<th>Hazardous Materials Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proper Shipping Name</td>
</tr>
<tr>
<td>The appropriate proper shipping name listed in § 172.101; Liquefied or non-liquefied compressed gases, or mixtures of such compressed gases, which are authorized in the Hazardous Materials Regulations for transportation in DOT 3A and 3AA and 3AL cylinders</td>
</tr>
</tbody>
</table>

7. SAFETY CONTROL MEASURES:

a. PACKAGING: Packaging prescribed is a DOT Specification 3A, 3AA or 3AL cylinder that is subjected to periodic retesting, reinspection and marking, as prescribed in § 180.205; except that the cylinder is examined by ultrasonic test in lieu of the hydrostatic pressure test and internal visual examination prescribed in § 180.205. The DOT 3AL cylinders are limited to those made of aluminum alloy 6061-T6. Each cylinder must be subjected to an external visual examination and retested in accordance with the procedure described in Air Products and Chemicals, Inc.’s application for special permit on file with the Office of Hazardous Materials Safety Approvals and Permits Division (OHMSAPD) unless otherwise noted herein. A cylinder that has been exposed to fire or to excessive heat may not be retested under the terms of this special permit.
b. Ultrasonic Equipment and Performance: The ultrasonic equipment performance must conform to the Air Products and Chemicals, Inc.’s application on file with OHMSAPD and as prescribed in this special permit. The equipment must be a fully automated, pulse echo type, and incorporate multiple channel transducers, with interactive software. The ultrasonic system must be capable of projecting shear waves into the cylinder wall in both longitudinal and circumferential directions and normal to the cylinder wall to ensure 100 percent coverage of the cylinder wall. The ultrasonic system must be capable of detecting all defects (e.g., isolated pits, line corrosion, sidewall defects and line corrosion in the sidewall-to-base transition (SBT) area). The system must be configured to direct longitudinal ultrasonic angle beams from the cylinder shoulder down to the cylinder base, which includes sidewall-to-base transition (SBT) area; and from the cylinder base up to the cylinder shoulder. The transducers or cylinder must be arranged so that the ultrasonic beams enter into the cylinder wall in directions necessary to detect calibration cylinder features (e.g., FBH) and thus detect sidewall cylinder flaws. The ultrasonic testing system must be equipped to discern when the ultrasonic data indicates a loss of acoustic coupling between the transducer assembly and the cylinder wall. This safety control measure must be an integral part of the ultrasonic testing procedure. A test must be considered invalid if a Lack-of-Expected-Response (L.E.R.) incident is indicated. An L.E.R. indication of the wall thickness channel in the sidewall-to-base transition (SBT) area will not invalidate the test, as long as one of the longitudinal shear wave channels is transmitting the ultrasonic signals into the SBT area. Manual contact shear or longitudinal search units may be used for evaluating and sizing indicated defects. Manual UE must be performed under direct supervision of a Senior Review Technologist by a minimum Level II operator and in accordance with American Society of Testing Materials (ASTM) practice E 213.

c. Standard References (Calibration Standards):

(1) UE Reference Cylinder: A cylinder or cylinder section must be used as a standard reference and must have similar acoustic properties, surface finish and metallurgical condition as the cylinders under test. The standard reference, (reference cylinder) must have a known minimum design wall thickness (t_m) which is less than or equal to the cylinder under test. The standard
reference cylinder for cylinders less than or equal to 6-inches in diameter must have the same nominal diameter as the cylinder being tested.

Cylinders greater than 6-inches in diameter must conform to the allowable size ranges shown in the following table:

<table>
<thead>
<tr>
<th>Outside Diameter, OD (inches)</th>
<th>Min. OD (inches)</th>
<th>Max. OD (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.00</td>
<td>6.30</td>
<td>10.00</td>
</tr>
<tr>
<td>7.50</td>
<td>6.75</td>
<td>11.25</td>
</tr>
<tr>
<td>9.00</td>
<td>8.10</td>
<td>13.50</td>
</tr>
<tr>
<td>9.25</td>
<td>8.33</td>
<td>13.88</td>
</tr>
<tr>
<td>10.00</td>
<td>9.00</td>
<td>15.00</td>
</tr>
<tr>
<td>12.00</td>
<td>10.80</td>
<td>18.00</td>
</tr>
<tr>
<td>14.00</td>
<td>12.60</td>
<td>21.00</td>
</tr>
<tr>
<td>14.25</td>
<td>12.83</td>
<td>21.38</td>
</tr>
<tr>
<td>18.00</td>
<td>16.20</td>
<td>27.00</td>
</tr>
<tr>
<td>22.00</td>
<td>19.80</td>
<td>33.00</td>
</tr>
<tr>
<td>24.00</td>
<td>21.60</td>
<td>36.00</td>
</tr>
</tbody>
</table>

Prior to placing the simulated defects, such as minimum wall thickness, the average minimum wall thickness for the standard reference must be determined by means of an independent method.

(2) The standard reference (reference cylinder) must be prepared to include the following artificial defects:

(i) DOT 3A and 3AA Cylinders:
(A) Simulated defect for reduction in wall thickness (area corrosion): A simulated defect for area corrosion must be machined into the inside surface of the cylinder. A minimum of two different thickness steps must be machined into the inside cylinder wall. Dimensions must be as follows:

(1) The simulated defect must be less than or equal to 0.7 square inch (in\(^2\)) in area and have a maximum depth of 1/20 of the design minimum wall thickness (\(t_m\)). The remaining wall thickness is equal to or greater than \(t_m\).

(2) For cylinders with an outside diameter of 18” or larger the simulated defect must be less than or equal to 1.5 square inches in area and have a depth of 1/20 of the design minimum wall thickness (\(t_m\)). The remaining wall thickness is equal to or greater than \(t_m\).

(B) Simulated defect for an isolated pit: A flat bottom hole (FBH) must be machined into the inside surface of the cylinder to simulate an isolated pit. Dimensions must be as follows:

(1) For cylinders with an outside diameter less than or equal to 4 inches, the FBH must be 1/8-inch in diameter and have a depth equal to 1/3 of \(t_m\).

(2) For cylinders with an outside diameter greater than 4 inches the FBH must be 1/4-inch in diameter and have a depth equal to 1/3 of \(t_m\).

(3) For cylinders with an outside diameter of 18” or larger, the standardization ring must include a 1/2-inch diameter flat bottom hole (FBH) with a depth equal to 1/3 of \(t_m\).

(C) Simulated defect for line corrosion in the sidewall-to-base transition (SBT): A circumferential notch must be machined into the surface of the cylinder to simulate SBT line
corrosion. The notch must be 1/10 of t_m depth, 1 inch long and less than or equal to 0.02-inch in width for a standard reference (calibration cylinder) produced after April 4, 2006. Standard references (calibration cylinder) produced before April 4, 2006 may have larger length and width but must be stamped with the date to indicate the evidence of their manufactured date.

(ii) DOT 3AL Cylinders:

(A) Simulated defect for reduction in wall thickness (area corrosion): A simulated defect for area corrosion must be machined into the inside surface of the cylinder. A minimum of two different thickness steps must be machined into the inside cylinder wall. For DOT 3AL cylinders the simulated defect must be less than or equal to 0.7 square inches (in^2) and less than or equal to 1/20 of the design minimum wall thickness (t_m) depth. The remaining wall thickness is equal to or greater than t_m.

(B) Simulated defect for an isolated pit: A flat bottom hole (FBH) must be machined into the inside surface of the cylinder to simulate an isolated pit. Dimensions must be as follows:

1. For cylinders with a diameter less than or equal to 4 inches the FBH must be 1/8-inch diameter and 1/3 of t_m depth;

2. For cylinders with a diameter greater than 4 inches the FBH must be 1/4 inch diameter and 1/3t_m in depth.

(C) Simulated defect for longitudinal and circumferential line corrosion in DOT 3AL cylinders: The artificial defects for line corrosion in DOT 3AL cylinders consists of two circumferential (one internal and one external) and two longitudinal (one internal and one external) notches. These notches shall be
electro discharge machined (EDM), measuring 0.10 \(t_m \), in depth, 1 inch in length and less than or equal to 0.010 inch in width.

(3) A certification statement signed by a Senior Review Technologist (SRT) of the grantee must be available for all standard references at each site where retesting is performed. The certification statement must include a standard reference drawing for each size and type of cylinder. A standard reference drawing must include dimensions and the locations of each simulated defect.

d. Ultrasonic Examination (UE) System Standardization (Calibration): Prior to retesting a cylinder, the cylinder class (DOT specification) must be identified. The UE system must be standardized for testing the identified cylinder by using a standard reference. The standard reference must be similar (material of construction, size, wall thickness, etc.) to the identified cylinders to be tested. Standardization of the UE system must be performed by using a relevant reference cylinder that is described in Paragraph 7.c. of this special permit. The standardization of the UE system must be as follows:

(1) A reference cylinder with a machined simulated defect made to represent area corrosion must be placed in the UE system. The UE system must be standardized to indicate rejection for an area equal to or greater than the machined surface for that class of cylinder (e.g., 0.70 in\(^2\) for DOT 3A, 3AA and 3AL from 4.2” to 16” diameter and 1.5 in\(^2\) for 3A, 3AA cylinders with an outside diameter of 18” or larger.). Where the wall thickness is reduced below \(t_m \), a straight ultrasound beam must be used to measure the wall thickness of the machined area.

(2) A reference cylinder with a machined FBH made to represent an isolated pit must be placed in the UE system. The FBH must be detected by a minimum of two shear wave beams that strike the FBH from opposite sides (e.g. the first shear wave direction is from top to bottom of the cylinder and the second shear wave direction is from the bottom to top). The UE gain must be increased until the signal from FBH is maximized at 80 percent of the screen height.

(3) A reference cylinder with a machined notch made to represent SBT line corrosion must be placed in the UE system. The notch must be detected by a minimum of one
shear wave beam. The UE gain must be increased until the signal from the notch is maximized at 80 percent of the screen height.

e. Test Procedures:

(1) During the test, each cylinder must be examined by the standardized (calibrated) UE system using a relevant set-up that is described in paragraph 7.d. of this special permit.

(2) For each cylinder tested, all 5 scan passes/channels must be performed as they are described in paragraph 7.d.

(3) For retesting of DOT 3A and 3AA specification cylinders only, the UE system that is set-up to perform a 5 pass/channel scan may perform a 3 pass/channel scan if the longitudinal (descending from the cylinder shoulder down to SBT) and circumferential (clockwise) angle beam scans do not detect a rejectable flaw.

(4) A copy of the operating test procedure (as approved and acknowledged in writing by OHMSAPD for performing ultrasonic examination of cylinders under the terms of this special permit must be at each facility performing ultrasonic examination. At a minimum, this procedure must include:

 (i) A description of the test set-up; test parameters; transducer model number, frequency, and size; transducer assembly used; system standardization procedures and threshold gain used during the test; and other pertinent information.

 (ii) A requirement for the equipment standardization to be performed at the end of the test interval (cal-out) after 200 cylinders or four hours, whichever occurs first. This cal-out can be considered the cal-in for the next interval during continuous operation. Cylinders examined during the interval between cal-in and cal-out must be quarantined until an acceptable cal-out has been performed. An acceptable cal-out occurs when the calibration cylinder is examined and all required features are revealed without changing examination settings. If an acceptable cal-out does not occur and if any equipment that affects the UE results is
subsequently replaced or altered (such as a search unit or coaxial cable etc.), then all cylinders examined since the last successful calibration must be re-examined. When a loss of power occurs a re-standardization must be performed when power is returned and before cylinder examination commences. If no adjustments are made to the examination settings then this recalibration may be considered a cal-out for the quarantined cylinders. However, if the examination settings are changed then all the cylinders examined since the last successful calibration must be re-examined. Additionally, standardization of test equipment shall be performed at the beginning of each work shift; when the cylinder under test has dimensions that exceed the allowable ranges of the reference cylinder; when there is a change of operator(s); if any equipment that affects the UE results are replaced or altered (such as a search unit or coaxial cable etc.); or, when a loss of power occurs, and at the end of each work shift.

(5) A copy of the most recently approved operating test procedure must be made available to a DOT representative when requested. Any change to the written procedures or in UE equipment (software or hardware), other than as supplied by the original equipment manufacturer, must be submitted to and approved by AAHMS prior to implementation.

(6) The equipment may not allow testing of a cylinder unless the system has been properly standardized (calibrated).

(7) The rotational speed of a reference cylinder must be such that all simulated defects are adequately detected, measured and recorded.

(8) The rotational speed of the cylinder under UE must not exceed the rotational speed used during the standardization.

(9) The pulse rate must be adjusted to ensure a minimum of 10% overlap for each helix.
(10) The area of ultrasonic examination (UE) coverage must be 100% of the cylindrical section. The coverage must extend at least three inches into the sidewall-to-base transition taper.

(11) The external surface of the cylinder to be examined must be free of loose material such as scale and dirt.

f. Acceptance/Rejection Criteria: Cylinders must be rejected if:

(1) The measured wall thickness is less than the design minimum wall thickness for the area described in the standardization section of paragraph 7.d. The minimum design wall thickness must be obtained from the cylinder drawing or from the manufacturer.

(2) If any of the flaws, such as an isolated pit or circumferential line, meets the rejection criteria and produces a signal whose amplitude crosses the reference threshold set in the standardization section (paragraph 7.d.).

g. Rejected Cylinders: When a cylinder is rejected, the retester must stamp a series of X’s over the DOT specification number and marked service pressure, or stamp “CONDEMNED” on the shoulder, top head, or neck using a steel stamp, and must notify the cylinder owner, in writing, that the cylinder is rejected and may not be filled with hazardous material for transportation in commerce.

(1) Alternatively, at the direction of the owner, the retester may render the cylinder incapable of holding pressure.

(2) If a condemned cylinder contains hazardous materials and the testing facility does not have the capability of safely removing the hazardous material, the retester must stamp the cylinder “CONDEMNED” and affix conspicuous labels on the cylinder(s) stating: “UE REJECTED DOT-SP 15258. RETURNING TO ORIGIN FOR PROPER DISPOSITION”. The retester may only offer the condemned cylinders for transportation by a motor vehicle operated by a private carrier to a facility, identified to, and acknowledged in writing with OHMSAPD, that is capable of safely removing the hazardous material. A current copy of this special
permit must accompany each shipment of condemned cylinders transported for the disposal of hazardous material.

h. **Marking:** Each cylinder passing retests under the provisions of this special permit must be marked as prescribed in § 180.213. In addition, each cylinder must be marked **UE**, in characters not less than 1/4 high at a location close to the retester’s marking.

i. **UE Report:** A report must be generated for each cylinder that is examined. The UE report must include the following:

1. UE equipment, model and serial number
2. Transducer specification, size, frequency and manufacturer
3. Specification of each standard reference used to perform UE. Standard reference must be identified by serial number or other stamped identification marking.
4. Cylinder serial number and type
5. UE technician’s name and certification level
6. Examination Date
7. Location and type of each defect on the cylinder
8. Dimensions (area, depth and remaining wall thickness) and brief description of each defect
9. Acceptance/rejection results, and
10. The UE report must be on file at each test facility, and copies made available to a DOT official when requested.

j. **Personnel Qualification:** Each person who performs retesting, and evaluates and certifies retest results must meet the following qualification requirements:

1. Project Manager/Director of Product Technology is the senior manager of the grantee responsible for compliance with DOT regulations including this special...
permit. Additionally, the project manager must ensure that each operator and senior review technologist maintains the required certifications described herein.

The personnel responsible for performing cylinder retesting under this special permit must be qualified to an appropriate Ultrasonic Testing Certification Level (Level I, II or III) in accordance with the American Society for Nondestructive Testing (ASNT) Recommended Practice SNT-TC-1A depending upon the assigned responsibility as described below:

(i) System startup and calibration must be performed by a Level II operator. A Level II operator may review and certify test results. However, written procedures for accepting/rejecting a cylinder must be provided by the senior review technologist. Based upon written criteria, the Level II Operator may authorize cylinders that pass the retest to be marked in accordance with paragraph 7.h of this special permit. A person with Level I certification may perform a system startup, check calibration, and perform ultrasonic testing under the direct guidance and supervision of a Senior Review Technologist or a Level II Operator, either of whom must be physically present at the test site so as to be able to observe testing conducted under this special permit.

(ii) Senior Review Technologist (SRT): is a person who provides written UE procedure, supervisory training, examinations (Level I and II) and technical guidance to operators, and reviews and verifies the retest results. The SRT must prepare and submit the reports required in paragraphs 7.i. and annually verify that the UE program is being operated in accordance with the requirements of this special permit. An SRT must have a thorough understanding of the DOT Regulations (49 CFR) pertaining to the requalification and reuse of DOT cylinders that are authorized under both this special permit and ASNT Recommended Practice SNT-TC-1A and must possess:

(A) A Level III certification from ASNT in
Ultrasonic Testing; or

(B) Non-Destructive Evaluation (NDE) of pressure vessels or pipelines using the ultrasonic examination technique; or

(C) A PhD degree in a discipline of Engineering/Physics with documented evidence of experience in Non-Destructive Evaluation (NDE) of pressure vessels or pipelines using the ultrasonic examination technique or research/thesis work and authoring/co-authoring of technical papers published, in recognized technical journals, in the fields of ultrasonic testing methods.

The most recent copies of certification (e.g., ASNT Level III, P.E.) must be available for inspection at each requalification facility.

k. OPERATIONAL CONTROLS:

(1) No person may perform inspection and testing of cylinders subject to this special permit unless:

 (i) That person is an employee or agent of the grantee and has a current copy of this special permit at the location of such inspection and testing;

 (ii) That person complies with all the terms and conditions of this special permit; and

 (iii) That person is listed on the Attachment of this special permit.

(2) The marking of the retester’s symbol on the cylinders certifies compliance with all of the terms and conditions of this special permit and the HMR.

(3) Each facility approved by OHMSAPD to test cylinders under the terms of this special permit must have a resident operator with at least an ASNT Level II Certification in UT.
(4) The UE equipment and operating procedures identified in this special permit are only authorized for use when the approved SRT is available (or alternatively available by telephone or other electronic means) at each facility operating under the special permit.

(5) Notwithstanding the requirements of a RIN Approval for notification of address and personnel changes, any change in Project manager or SRT, with appropriate documentation (i.e., ANST certification), must be submitted to and acknowledged in writing by OHMSAPD Division immediately.

8. SPECIAL PROVISIONS:

a. A person who is not a holder of this special permit who receives a package covered by this special permit may reoffer it for transportation provided no modification or change is made to the package and it is reoffered for transportation in conformance with this special permit and the HMR.

b. Transportation of Division 2.1 (flammable gases) and Division 2.3 (gases which are poisonous by inhalation) are not authorized aboard cargo vessel or aircraft unless specifically authorized in the Hazardous Materials Table (§ 172.101)

c. Transportation of oxygen is only authorized by aircraft when in accordance with § 175.501.

9. MODES OF TRANSPORTATION AUTHORIZED: Motor vehicle, rail freight, cargo vessel, passenger-carrying aircraft, and cargo aircraft.

10. MODAL REQUIREMENTS: None other than as required by the HMR.

11. COMPLIANCE: Failure by a person to comply with any of the following may result in suspension or revocation of this special permit and penalties prescribed by the Federal hazardous materials transportation law, 49 U.S.C. 5101 et seq:

 o All terms and conditions prescribed in this special permit and the Hazardous Materials Regulations, 49 CFR Parts 171-180.
o Persons operating under the terms of this special permit must comply with the security plan requirement in Subpart I of Part 172 of the HMR, when applicable.

o Registration required by § 107.601 et seq., when applicable.

Each “Hazmat employee”, as defined in § 171.8, who performs a function subject to this special permit must receive training on the requirements and conditions of this special permit in addition to the training required by §§ 172.700 through 172.704.

No person may use or apply this special permit, including display of its number, when this special permit has expired or is otherwise no longer in effect.

Under Title VII of the Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU)—“The Hazardous Materials Safety and Security Reauthorization Act of 2005” (Pub. L. 109-59), 119 Stat. 1144 (August 10, 2005), amended the Federal hazardous materials transportation law by changing the term “exemption” to “special permit” and authorizes a special permit to be granted up to two years for new special permits and up to four years for renewals.

12. REPORTING REQUIREMENTS: Shipments or operations conducted under this special permit are subject to the Hazardous Materials Incident Reporting requirements specified in 49 CFR §§ 171.15 Immediate notice of certain hazardous materials incidents, and 171.16 Detailed hazardous materials incident reports. In addition, the grantee(s) of this
special permit must notify the Associate Administrator for Hazardous Materials Safety, in writing, of any incident involving a package, shipment or operation conducted under terms of this special permit.

Issued in Washington, D.C.:

for William Schoonover
Associate Administrator for Hazardous Materials Safety

Copies of this special permit may be obtained by accessing the Hazardous Materials Safety Homepage at http://hazmat.dot.gov/sp_app/special_permits/spec_perm_index.htm. Photo reproductions and legible reductions of this special permit are permitted. Any alteration of this special permit is prohibited.

PO: TG
Attachment:

Only the following personnel have been authorized by OHMSGAP to perform requalification functions described in this special permit. As acknowledged by the list of names below, the grantee of this special permit must notify OHMSGAP of any change in within 20 days of that change.

1. Ron Halenar
2. Paul Kadlecik
3. Richard Murphy
4. George Dinofrio